File size: 11,842 Bytes
733aa30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import absolute_import, division, print_function, unicode_literals

import re
from collections import deque
from enum import Enum

import numpy as np


"""
    Utility modules for computation of Word Error Rate,
    Alignments, as well as more granular metrics like
    deletion, insersion and substitutions.
"""


class Code(Enum):
    match = 1
    substitution = 2
    insertion = 3
    deletion = 4


class Token(object):
    def __init__(self, lbl="", st=np.nan, en=np.nan):
        if np.isnan(st):
            self.label, self.start, self.end = "", 0.0, 0.0
        else:
            self.label, self.start, self.end = lbl, st, en


class AlignmentResult(object):
    def __init__(self, refs, hyps, codes, score):
        self.refs = refs  # std::deque<int>
        self.hyps = hyps  # std::deque<int>
        self.codes = codes  # std::deque<Code>
        self.score = score  # float


def coordinate_to_offset(row, col, ncols):
    return int(row * ncols + col)


def offset_to_row(offset, ncols):
    return int(offset / ncols)


def offset_to_col(offset, ncols):
    return int(offset % ncols)


def trimWhitespace(str):
    return re.sub(" +", " ", re.sub(" *$", "", re.sub("^ *", "", str)))


def str2toks(str):
    pieces = trimWhitespace(str).split(" ")
    toks = []
    for p in pieces:
        toks.append(Token(p, 0.0, 0.0))
    return toks


class EditDistance(object):
    def __init__(self, time_mediated):
        self.time_mediated_ = time_mediated
        self.scores_ = np.nan  # Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
        self.backtraces_ = (
            np.nan
        )  # Eigen::Matrix<size_t, Eigen::Dynamic, Eigen::Dynamic> backtraces_;
        self.confusion_pairs_ = {}

    def cost(self, ref, hyp, code):
        if self.time_mediated_:
            if code == Code.match:
                return abs(ref.start - hyp.start) + abs(ref.end - hyp.end)
            elif code == Code.insertion:
                return hyp.end - hyp.start
            elif code == Code.deletion:
                return ref.end - ref.start
            else:  # substitution
                return abs(ref.start - hyp.start) + abs(ref.end - hyp.end) + 0.1
        else:
            if code == Code.match:
                return 0
            elif code == Code.insertion or code == Code.deletion:
                return 3
            else:  # substitution
                return 4

    def get_result(self, refs, hyps):
        res = AlignmentResult(refs=deque(), hyps=deque(), codes=deque(), score=np.nan)

        num_rows, num_cols = self.scores_.shape
        res.score = self.scores_[num_rows - 1, num_cols - 1]

        curr_offset = coordinate_to_offset(num_rows - 1, num_cols - 1, num_cols)

        while curr_offset != 0:
            curr_row = offset_to_row(curr_offset, num_cols)
            curr_col = offset_to_col(curr_offset, num_cols)

            prev_offset = self.backtraces_[curr_row, curr_col]

            prev_row = offset_to_row(prev_offset, num_cols)
            prev_col = offset_to_col(prev_offset, num_cols)

            res.refs.appendleft(curr_row - 1)  # Note: this was .push_front() in C++
            res.hyps.appendleft(curr_col - 1)
            if curr_row - 1 == prev_row and curr_col == prev_col:
                res.codes.appendleft(Code.deletion)
            elif curr_row == prev_row and curr_col - 1 == prev_col:
                res.codes.appendleft(Code.insertion)
            else:
                # assert(curr_row - 1 == prev_row and curr_col - 1 == prev_col)
                ref_str = refs[res.refs[0]].label
                hyp_str = hyps[res.hyps[0]].label

                if ref_str == hyp_str:
                    res.codes.appendleft(Code.match)
                else:
                    res.codes.appendleft(Code.substitution)

                    confusion_pair = "%s -> %s" % (ref_str, hyp_str)
                    if confusion_pair not in self.confusion_pairs_:
                        self.confusion_pairs_[confusion_pair] = 1
                    else:
                        self.confusion_pairs_[confusion_pair] += 1

            curr_offset = prev_offset

        return res

    def align(self, refs, hyps):
        if len(refs) == 0 and len(hyps) == 0:
            return np.nan

        # NOTE: we're not resetting the values in these matrices because every value
        # will be overridden in the loop below. If this assumption doesn't hold,
        # be sure to set all entries in self.scores_ and self.backtraces_ to 0.
        self.scores_ = np.zeros((len(refs) + 1, len(hyps) + 1))
        self.backtraces_ = np.zeros((len(refs) + 1, len(hyps) + 1))

        num_rows, num_cols = self.scores_.shape

        for i in range(num_rows):
            for j in range(num_cols):
                if i == 0 and j == 0:
                    self.scores_[i, j] = 0.0
                    self.backtraces_[i, j] = 0
                    continue

                if i == 0:
                    self.scores_[i, j] = self.scores_[i, j - 1] + self.cost(
                        None, hyps[j - 1], Code.insertion
                    )
                    self.backtraces_[i, j] = coordinate_to_offset(i, j - 1, num_cols)
                    continue

                if j == 0:
                    self.scores_[i, j] = self.scores_[i - 1, j] + self.cost(
                        refs[i - 1], None, Code.deletion
                    )
                    self.backtraces_[i, j] = coordinate_to_offset(i - 1, j, num_cols)
                    continue

                # Below here both i and j are greater than 0
                ref = refs[i - 1]
                hyp = hyps[j - 1]
                best_score = self.scores_[i - 1, j - 1] + (
                    self.cost(ref, hyp, Code.match)
                    if (ref.label == hyp.label)
                    else self.cost(ref, hyp, Code.substitution)
                )

                prev_row = i - 1
                prev_col = j - 1
                ins = self.scores_[i, j - 1] + self.cost(None, hyp, Code.insertion)
                if ins < best_score:
                    best_score = ins
                    prev_row = i
                    prev_col = j - 1

                delt = self.scores_[i - 1, j] + self.cost(ref, None, Code.deletion)
                if delt < best_score:
                    best_score = delt
                    prev_row = i - 1
                    prev_col = j

                self.scores_[i, j] = best_score
                self.backtraces_[i, j] = coordinate_to_offset(
                    prev_row, prev_col, num_cols
                )

        return self.get_result(refs, hyps)


class WERTransformer(object):
    def __init__(self, hyp_str, ref_str, verbose=True):
        self.ed_ = EditDistance(False)
        self.id2oracle_errs_ = {}
        self.utts_ = 0
        self.words_ = 0
        self.insertions_ = 0
        self.deletions_ = 0
        self.substitutions_ = 0

        self.process(["dummy_str", hyp_str, ref_str])

        if verbose:
            print("'%s' vs '%s'" % (hyp_str, ref_str))
            self.report_result()

    def process(self, input):  # std::vector<std::string>&& input
        if len(input) < 3:
            print(
                "Input must be of the form <id> ... <hypo> <ref> , got ",
                len(input),
                " inputs:",
            )
            return None

        # Align
        # std::vector<Token> hyps;
        # std::vector<Token> refs;

        hyps = str2toks(input[-2])
        refs = str2toks(input[-1])

        alignment = self.ed_.align(refs, hyps)
        if alignment is None:
            print("Alignment is null")
            return np.nan

        # Tally errors
        ins = 0
        dels = 0
        subs = 0
        for code in alignment.codes:
            if code == Code.substitution:
                subs += 1
            elif code == Code.insertion:
                ins += 1
            elif code == Code.deletion:
                dels += 1

        # Output
        row = input
        row.append(str(len(refs)))
        row.append(str(ins))
        row.append(str(dels))
        row.append(str(subs))
        # print(row)

        # Accumulate
        kIdIndex = 0
        kNBestSep = "/"

        pieces = input[kIdIndex].split(kNBestSep)

        if len(pieces) == 0:
            print(
                "Error splitting ",
                input[kIdIndex],
                " on '",
                kNBestSep,
                "', got empty list",
            )
            return np.nan

        id = pieces[0]
        if id not in self.id2oracle_errs_:
            self.utts_ += 1
            self.words_ += len(refs)
            self.insertions_ += ins
            self.deletions_ += dels
            self.substitutions_ += subs
            self.id2oracle_errs_[id] = [ins, dels, subs]
        else:
            curr_err = ins + dels + subs
            prev_err = np.sum(self.id2oracle_errs_[id])
            if curr_err < prev_err:
                self.id2oracle_errs_[id] = [ins, dels, subs]

        return 0

    def report_result(self):
        # print("----------  Summary ---------------")
        if self.words_ == 0:
            print("No words counted")
            return

        # 1-best
        best_wer = (
            100.0
            * (self.insertions_ + self.deletions_ + self.substitutions_)
            / self.words_
        )

        print(
            "\tWER = %0.2f%% (%i utts, %i words, %0.2f%% ins, "
            "%0.2f%% dels, %0.2f%% subs)"
            % (
                best_wer,
                self.utts_,
                self.words_,
                100.0 * self.insertions_ / self.words_,
                100.0 * self.deletions_ / self.words_,
                100.0 * self.substitutions_ / self.words_,
            )
        )

    def wer(self):
        if self.words_ == 0:
            wer = np.nan
        else:
            wer = (
                100.0
                * (self.insertions_ + self.deletions_ + self.substitutions_)
                / self.words_
            )
        return wer

    def stats(self):
        if self.words_ == 0:
            stats = {}
        else:
            wer = (
                100.0
                * (self.insertions_ + self.deletions_ + self.substitutions_)
                / self.words_
            )
            stats = dict(
                {
                    "wer": wer,
                    "utts": self.utts_,
                    "numwords": self.words_,
                    "ins": self.insertions_,
                    "dels": self.deletions_,
                    "subs": self.substitutions_,
                    "confusion_pairs": self.ed_.confusion_pairs_,
                }
            )
        return stats


def calc_wer(hyp_str, ref_str):
    t = WERTransformer(hyp_str, ref_str, verbose=0)
    return t.wer()


def calc_wer_stats(hyp_str, ref_str):
    t = WERTransformer(hyp_str, ref_str, verbose=0)
    return t.stats()


def get_wer_alignment_codes(hyp_str, ref_str):
    """
    INPUT: hypothesis string, reference string
    OUTPUT: List of alignment codes (intermediate results from WER computation)
    """
    t = WERTransformer(hyp_str, ref_str, verbose=0)
    return t.ed_.align(str2toks(ref_str), str2toks(hyp_str)).codes


def merge_counts(x, y):
    # Merge two hashes which have 'counts' as their values
    # This can be used for example to merge confusion pair counts
    #   conf_pairs = merge_counts(conf_pairs, stats['confusion_pairs'])
    for k, v in y.items():
        if k not in x:
            x[k] = 0
        x[k] += v
    return x