Spaces:
Runtime error
Runtime error
File size: 2,530 Bytes
9abe193 bd6f231 9abe193 bd6f231 0b7c71e 7cd326f 9c43aaf b711036 54b0001 b9cbd3a 54b0001 b711036 54b0001 9abe193 16ce300 9abe193 bd6f231 9abe193 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import numpy as np
import pandas as pd
import pickle
import gradio as gr
from catboost import CatBoostClassifier
clf = CatBoostClassifier()
clf.load_model("./loan_model.bin")
def predict(customerid: 0,
gender: 'Female',
married: 'No',
dependents: 2,
education: 'Graduate',
self_employed: 'Yes',
applicantincome: 50083.0,
coapplicantincome: 10.0,
loanamount: 100.0,
loan_amount_term: 24,
credit_history: 0,
property_area: 'Rural'):
prediction_array = np.array([customerid, gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area])
verdict = clf.predict(prediction_array)
if verdict >= 0.5:
print('Good Standing - Approved: "Applicant stand a higher chance paying back loan"')
else:
print('Bad Standing - Rejected: "Applicant stand a higher chance defaulting payment"')
with gr.Blocks() as demo:
with gr.Row() as row1:
customerid = gr.Slider(1,1000000000, label="ClientID", interactive = True)
gender = gr.Dropdown(choices=[0,1], label="Gender")
married = gr.Dropdown(choices=[0,1], label="Marital Status")
dependents = gr.Dropdown(choices=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], label="Dependants")
education = gr.Dropdown(choices=["Graduate", "Not Graduate"], label="Education")
self_employed = gr.Dropdown(choices=[0,1], label="Employment Status")
applicantincome = gr.Slider(1,100000, label = "Applicant's Income", interactive = True)
coapplicantincome = gr.Slider(1,100000, label = "CoApplicant's Income", interactive = True)
loanamount = gr.Slider(1,100000, label = "Loan Amount", interactive = True)
loan_amount_term = gr.Slider(1,480, label = "Loan Period", interactive = True)
credit_history = gr.Dropdown(choices=[0,1], label="Credit history")
property_area = gr.Dropdown(choices=["Rural", "Urban"], label="Property Area")
submit = gr.Button(value = 'Predict')
output = gr.Textbox(label = "Verdict:", interactive = False)
submit.click(predict, input = [customerid, gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area], outputs = [output])
demo.launch(share = False, debut = False) |