File size: 5,192 Bytes
80edda9
85aeaf9
 
80edda9
85aeaf9
 
b7f2204
 
 
 
 
 
 
 
 
 
80edda9
85aeaf9
 
80edda9
85aeaf9
b7f2204
 
 
 
 
 
85aeaf9
 
80edda9
85aeaf9
 
 
80edda9
85aeaf9
 
 
 
 
4a77a5e
85aeaf9
 
 
 
 
 
 
80edda9
85aeaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a77a5e
85aeaf9
 
 
 
 
 
 
80edda9
85aeaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80edda9
 
 
85aeaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80edda9
85aeaf9
 
 
 
 
 
 
 
 
 
80edda9
 
85aeaf9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
from peft import PeftModel
import numpy as np
import os
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports

def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
    if not str(filename).endswith("modeling_florence2.py"):
        return get_imports(filename)
    imports = get_imports(filename)
    imports.remove("flash_attn")
    return imports

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.float32

# Load the fine-tuned base model
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
  caption_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True, revision='refs/pr/6', torch_dtype=torch_dtype).to(device)

with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
  model = AutoModelForCausalLM.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True, torch_dtype=torch_dtype).to(device)

processor = AutoProcessor.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True)
model.eval()

def caption_generate(task_prompt, text_input=None, image=None):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
    generated_ids = caption_model.generate(
      input_ids=inputs["input_ids"],
      pixel_values=inputs["pixel_values"],
      max_new_tokens=1024,
      num_beams=3
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))

    return parsed_answer[task_prompt][1:-1]


def run_example(task_prompt, text_input=None, image=None):

    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = image.convert("RGB")

    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
    inputs = {k: v.to(torch_dtype) if v.is_floating_point() else v for k, v in inputs.items()}

    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    result = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))['<DEEPFAKE_DETECTION>']
    
    if result.lower() == "yes":
        return "This is a real image."
    elif result.lower() == "no":
        return "This is a fake image."
    else:
        return f"Uncertain. Model output: {result}"

# Define the Gradio interface
css = """
body {
    background-color: #1e1e2e;
    color: #d4d4dc;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

#output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #444;
    background-color: #282c34;
    color: #f1f1f1;
    padding: 10px;
}

.gr-button {
    background-color: #3a3f51;
    border: none;
    color: #ffffff;
    padding: 10px 20px;
    text-align: center;
    font-size: 14px;
    cursor: pointer;
    transition: 0.3s;
}

.gr-button:hover {
    background-color: #4b5263;
}

.gr-textbox {
    background-color: #2e2e38;
    border: 1px solid #555;
    color: #ffffff;
}

.gr-markdown {
    color: #d4d4dc;
}
"""

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

TITLE = "# FLODA: Vision-Language Models for Deepfake Detection"
DESCRIPTION = """
FLODA (FLorence-2 Optimized for Deepfake Assessment) is an advanced deepfake detection model leveraging the power of [Florence-2](https://huggingface.co/microsoft/Florence-2-base-ft). 
FLODA combines image captioning with authenticity assessment in a single end-to-end architecture, demonstrating superior performance compared to existing benchmarks. 
Learn more about FLODA in the published paper [here](https://github.com/byh711/FLODA).
"""

with gr.Blocks(js=js_func, css=css) as demo:
    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="FLODA: Deepfake Detection"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture", type="numpy")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")

        submit_btn.click(
            fn=lambda image: run_example("<DEEPFAKE_DETECTION>", text_input=None, image=image),
            inputs=[input_img],
            outputs=[output_text]
        )

demo.launch(debug=True)