File size: 9,397 Bytes
1212df0
 
 
 
 
 
 
 
 
 
 
 
 
fa6a4f6
1212df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Module for storing the Model class, which can be used for wrapping sklearn or
PyTorch models. This is more so that evaluation can be abstracted.
"""

import pickle
import os
from abc import ABC, abstractmethod
from typing import Optional

import numpy as np
import matplotlib.pyplot as plt



# Torch
import torch
from torch.optim import AdamW
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    get_scheduler
)
from torch.utils.data import DataLoader
from tqdm.auto import tqdm

from .dataset import JobDataset, SVMJobDataset, HuggingFaceJobDataset
from .utils import FocalLoss, compute_metrics


class Model(ABC):

    # Saving and loading
    @abstractmethod
    def save_model(self, path: str, *args):
        """Save the model into a serialized format (e.g. pickle, tensors)"""
        pass

    @abstractmethod
    def load_model(self, path: str, *args):
        """Loads the model from the serialized format"""
        pass

    # Training, inference, evaluation
    @abstractmethod
    def fit(self, dataset: JobDataset):
        """Given the dataset class, train the underlying model"""
        pass

    @abstractmethod
    def evaluate(self, dataset: JobDataset):
        """Given the dataset class, output the evaluation metrics"""
        pass

    @abstractmethod
    def __call__(self, *args, **kwargs):
        """Given model inputs, predict the test set labels"""
        pass



class DistilBERTBaseModel(Model):
    def __init__(self,
                 pretrained_model="distilbert-base-uncased",
                 num_labels=2,
                 freeze=False,
                 class_frequencies: Optional[torch.Tensor] = None,
                 cpu=False):
        self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if cpu:
            self._device = torch.device("cpu")
        print("Torch device: ", repr(self._device))

        self._model = AutoModelForSequenceClassification.from_pretrained(
            pretrained_model, num_labels=num_labels
        ).to(self._device)
        self._tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

        # Initially we trained it with the earlier layers frozen to try and
        # speed up training, however we eventually undid this once we've
        # established the training loop.
        if freeze:
            self.freeze_layers()

        # If class frequencies were provided, use them to construct the focal
        # loss formulation
        self._loss = None
        if class_frequencies is not None:
            print(f"Loading a-balanced focal loss with weights {str(class_frequencies)}")
            self._loss = FocalLoss(
                class_frequencies=class_frequencies
            )

        # Set defaults, calling this after the fact to re-set parameters is
        # simple enough
        self.set_training_args()

    def freeze_layers(self, layer_prefixes: Optional[set] = None):
        """
        Freezes certain layers by prefixes in order to focus training on only
        certain layers.
        """

        if layer_prefixes is None:
            layer_prefixes = set([
            "distilbert.embeddings",
            "distilbert.transformer.layer.0",
            "distilbert.transformer.layer.1",
            "distilbert.transformer.layer.2",
            "distilbert.transformer.layer.3",
        ])

        for name, params in self._model.named_parameters():
            if any(prefix for prefix in layer_prefixes if name.startswith(prefix)):
                params.requires_grad = False

    def set_training_args(self, **training_args):
        training_args.setdefault("output_dir", "../models/DistilBERTBase")
        training_args.setdefault("learning_rate", 2e-5)
        training_args.setdefault("per_device_train_batch_size", 16)
        training_args.setdefault("per_device_eval_batch_size", 16)
        training_args.setdefault("num_train_epochs", 3)
        training_args.setdefault("weight_decay", 0.01)
        training_args.setdefault("save_strategy", "epoch")
        training_args.setdefault("evaluation_strategy", "epoch")
        training_args.setdefault("logging_strategy", "epoch")

        self._train_args = training_args
 
    def save_model(self, path, checkpoint_name: str = "checkpoint"):
        path = os.path.join(path, checkpoint_name)
        self._model.save_pretrained(path)

    def load_model(self, path):
        self._model = AutoModelForSequenceClassification \
            .from_pretrained(path) \
            .to(self._device)

    def fit(self,
            dataset: HuggingFaceJobDataset,
            subsample: bool = False,
            plot_loss: bool = False,
            eval_loss: bool = False):

        # Set up optimizer and LR scheduler
        train_dataloader = dataset.get_training_set(dataloader=True, subsample=subsample)
        eval_dataloader = dataset.get_validation_set(dataloader=True, subsample=subsample)
        num_epochs = self._train_args["num_train_epochs"]
        num_batches = len(train_dataloader)
        num_training_steps = num_epochs * num_batches
        optimizer = AdamW(self._model.parameters(), lr=5e-5)
        lr_scheduler = get_scheduler(
            name="linear",
            optimizer=optimizer,
            num_warmup_steps=0,
            num_training_steps=num_training_steps
        )
        progress_bar = tqdm(range(num_training_steps))
        losses = []
        eval_losses = []

        # Training loop
        self._model.train()
        for epoch in range(num_epochs):
            epoch_loss = 0.0
            for batch in train_dataloader:
                batch = {k: v.to(self._device) for k, v in batch.items()}
                outputs = self._model(**batch)
                if self._loss is None:
                    loss = outputs.loss
                else:
                    logits = outputs.logits
                    labels = batch["labels"]
                    scores = torch.softmax(logits, dim=-1)[:len(labels), 1]
                    loss = self._loss(scores, labels)
                loss.backward()

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)

                epoch_loss += loss.item()
                losses.append(loss.item())
            avg_loss = epoch_loss / num_batches
            print(f"Epoch {epoch+1} avg_loss: {avg_loss:.5f}")

            if eval_loss:
                eval_epoch_loss = 0.0
                num_eval_batches = len(eval_dataloader)
                for batch in eval_dataloader:
                    batch = {k: v.to(self._device) for k, v in batch.items()}
                    with torch.no_grad():
                        outputs = self._model(**batch)
                    loss = outputs.loss
                    eval_epoch_loss += loss.item()
                    eval_losses.append(loss.item())
                avg_loss = eval_epoch_loss / num_eval_batches
                print(f"        eval avg_loss: {avg_loss:.5f}")

        # Plot the loss if requested
        # Note that this is a moving average of the per-batch loss, which is
        # different from the usual per-epoch loss, as we only fine-tune for a
        # small number of epochs
        if plot_loss:
            kernel = np.ones(8) / 8
            losses = np.convolve(np.array(losses), kernel, mode='valid')
            fig, ax = plt.subplots(figsize=(10, 5))
            ax.plot(losses, label='Training Loss (MA-8)')
            if eval_losses:
                ax2 = ax.twiny()
                eval_losses = np.convolve(np.array(eval_losses), kernel, mode='valid')
                ax2.plot(eval_losses, color='orange', label='Eval Loss (MA-8)')
                ax2.legend()
            ax.set_xlabel('Batch')
            ax.set_ylabel('Average Loss')
            ax.set_title('Loss over Batches')
            ax.legend()
            fig.show()

    def evaluate(self, dataset: DataLoader, get_raw_results: bool = False, plot_pr_curve: bool = True):
        self._model.eval()
        targs_list = []
        score_list = []
        preds_list = []

        for batch in tqdm(dataset):
            batch = {k: v.to(self._device) for k, v in batch.items()}
            with torch.no_grad():
                outputs = self._model(**batch)

            logits = outputs.logits
            labels = batch["labels"]
            scores = torch.softmax(logits, dim=-1)[:len(labels), 1]
            predictions = torch.argmax(logits, dim=-1)

            targs_list.append(labels)
            score_list.append(scores)
            preds_list.append(predictions)

        targs = torch.concat(targs_list).cpu()
        scores = torch.concat(score_list).cpu()
        preds = torch.concat(preds_list).cpu()

        if get_raw_results:
            return targs, scores, preds
        else:
            return compute_metrics(targs, scores, preds, plot_pr_curve)

    def __call__(self, title: str, description: str) -> bool:
        inputs = self._tokenizer(
            title + " " + description,
            return_tensors="pt",
            truncation=True,
            padding=True
        ).to(self._device)

        with torch.inference_mode():
            outputs = self._model(**inputs)
        predictions = torch.argmax(outputs.logits, dim=-1).tolist()[0]
        return bool(predictions)