File size: 18,039 Bytes
03287bc
 
 
b0fc967
7cbb17a
03287bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#Import the libraries we know we'll need for the Generator.
import pandas as pd, spacy, nltk, numpy as np
from spacy.matcher import Matcher
nlp = spacy.load("en_core_web_lg")
nltk.download('omw-1.4')

#Import the libraries to support the model and predictions.
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
import lime
import torch
import torch.nn.functional as F
from lime.lime_text import LimeTextExplainer

#Import the libraries for human interaction and visualization.
import altair as alt
import streamlit as st
from annotated_text import annotated_text as ant

#Import functions needed to build dataframes of keywords from WordNet
from WNgen import *
from NLselector import *

@st.experimental_singleton
def set_up_explainer():
    class_names = ['negative', 'positive']
    explainer = LimeTextExplainer(class_names=class_names)
    return explainer

@st.experimental_singleton
def prepare_model():
    tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
    model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
    pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) 
    return tokenizer, model, pipe

@st.experimental_singleton
def prepare_lists():
    countries = pd.read_csv("Assets/Countries/combined-countries.csv")
    professions = pd.read_csv("Assets/Professions/soc-professions-2018.csv")
    word_lists = [list(countries.Words),list(professions.Words)]
    return countries, professions, word_lists

#Provide all the functions necessary to run the app
#get definitions for control flow in Streamlit
def get_def(word, POS=False):
    pos_options = ['NOUN','VERB','ADJ','ADV']
    m_word = word.replace(" ", "_")
    if POS in pos_options:
        seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS))]
    else:
        seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word)]
    seed_definition = col1.selectbox("Which definition is most relevant?", seed_definitions, key= "WN_definition")
    if col1.button("Choose Definition"):
        col1.write("You've chosen a definition.")
        st.session_state.definition = seed_definition
        return seed_definition
    else:
        col1.write("Please choose a definition.")
        
###Start coding the actual app###
st.set_page_config(layout="wide", page_title="Natural Language Counterfactuals (NLC)")
layouts = ['Natural Language Explanation', 'Lime Explanation', 'MultiNLC', 'MultiNLC + Lime', 'VizNLC']
alternatives = ['Similarity', 'Sampling (Random)', 'Sampling (Fixed)', 'Probability']
alt_choice = "Similarity"

#Content in the Sidebar.
st.sidebar.info('This is an interface for exploring how different interfaces for exploring natural language explanations (NLE) may appear to people. It is intended to allow individuals to provide feedback on specific versions, as well as to compare what one offers over others for the same inputs.')
layout = st.sidebar.selectbox("Select a layout to explore.", layouts)
alt_choice = st.sidebar.selectbox("Choose the way you want to display alternatives.", alternatives) #Commented out until we decide this is useful functionality.

#Set up the Main Area Layout
st.title('Natural Language Counterfactuals (NLC) Prototype')
st.subheader(f'Current Layout: {layout}')
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")

#Prepare the model, data, and Lime. Set starting variables.
tokenizer, model, pipe = prepare_model()
countries, professions, word_lists = prepare_lists()
explainer = set_up_explainer()
text2 = ""
text3 = ""
cf_df = pd.DataFrame()
if 'definition' not in st.session_state:
    st.session_state.definition = "<(^_')>"
    
#Outline the various user interfaces we have built.

col1, col2, col3 = st.columns(3)    
if layout == 'Natural Language Explanation':
    with col1:
        if st.session_state.input != "":
            st.caption("This is the sentence you provided.")
            st.write(text)
            probability, sentiment = eval_pred(text, return_all=True)
            nat_lang_explanation = construct_nlexp(text,sentiment,probability)

if layout == 'Lime Explanation':
    with col1:
        #Use spaCy to make the sentence into a doc so we can do NLP.
        doc = nlp(st.session_state.input)
        #Evaluate the provided sentence for sentiment and probability.
        if st.session_state.input != "":
            st.caption("This is the sentence you provided.")
            st.write(text)
            probability, sentiment = eval_pred(text, return_all=True)
            options, lime = critical_words(st.session_state.input,options=True)
            nat_lang_explanation = construct_nlexp(text,sentiment,probability)
            st.write(" ")
            st.altair_chart(lime_viz(lime))
            
if layout == 'MultiNLC':
    with col1:
        #Use spaCy to make the sentence into a doc so we can do NLP.
        doc = nlp(st.session_state.input)
        #Evaluate the provided sentence for sentiment and probability.
        if st.session_state.input != "":
            st.caption("This is the sentence you provided.")
            st.write(text)
            probability, sentiment = eval_pred(text, return_all=True)
            options, lime = critical_words(st.session_state.input,options=True)
            nat_lang_explanation = construct_nlexp(text,sentiment,probability)

        #Allow the user to pick an option to generate counterfactuals from.
            option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
            if (any(option in sublist for sublist in word_lists)):
                st.write(f'You selected {option}. It matches a list.')
            elif option:
                st.write(f'You selected {option}. It does not match a list.')
                definition = get_def(option)
            else:
                st.write('Awaiting your selection.')

            if st.button('Generate Alternatives'):
                if option in list(countries.Words):
                    cf_df = gen_cf_country(countries, doc, option)
                    st.success('Alternatives created.')
                elif option in list(professions.Words):
                    cf_df = gen_cf_profession(professions, doc, option)
                    st.success('Alternatives created.')
                else:
                    with st.sidebar:
                        ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
                    cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
                    st.success('Alternatives created.')

                if len(cf_df) != 0:
                    if alt_choice == "Similarity":
                        text2, text3 = get_min_max(cf_df, option)
                        col2.caption(f"This sentence is 'similar' to {option}.")
                        col3.caption(f"This sentence is 'not similar' to {option}.")
                    elif alt_choice == "Sampling (Random)":
                        text2, text3 = sampled_alts(cf_df, option)
                        col2.caption(f"This sentence is a random sample from the alternatives.")
                        col3.caption(f"This sentence is a random sample from the alternatives.")
                    elif alt_choice == "Sampling (Fixed)":
                        text2, text3 = sampled_alts(cf_df, option, fixed=True)
                        col2.caption(f"This sentence is a fixed sample of the alternatives.")
                        col3.caption(f"This sentence is a fixed sample of the alternatives.")
                    elif alt_choice == "Probability":
                        text2, text3 = abs_dif(cf_df, option)
                        col2.caption(f"This sentence is the closest prediction in the model.")
                        col3.caption(f"This sentence is the farthest prediction in the model.")
                    with st.sidebar:
                        st.info(f"Alternatives generated: {len(cf_df)}")
        
    with col2:
        if text2 != "":
            sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
            st.write(text2)
            probability2, sentiment2 = eval_pred(text2, return_all=True)
            nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
            #st.info(f" Similarity Score: {np.round(sim2, 2)}, Num Checked: {len(cf_df)}") #for QA purposes

    with col3:
        if text3 != "":
            sim3 = cf_df.loc[cf_df['text'] == text3, 'similarity'].iloc[0]
            st.write(text3)
            probability3, sentiment3 = eval_pred(text3, return_all=True)
            nat_lang_explanation = construct_nlexp(text3,sentiment3,probability3)
            #st.info(f"Similarity Score: {np.round(sim3, 2)}, Num Checked: {len(cf_df)}") #for QA purposes

if layout == 'MultiNLC + Lime':
    with col1:

        #Use spaCy to make the sentence into a doc so we can do NLP.
        doc = nlp(st.session_state.input)
        #Evaluate the provided sentence for sentiment and probability.
        if st.session_state.input != "":
            st.caption("This is the sentence you provided.")
            st.write(text)
            probability, sentiment = eval_pred(text, return_all=True)
            options, lime = critical_words(st.session_state.input,options=True)
            nat_lang_explanation = construct_nlexp(text,sentiment,probability)
            st.write(" ")
            st.altair_chart(lime_viz(lime))

        #Allow the user to pick an option to generate counterfactuals from.
            option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
            if (any(option in sublist for sublist in word_lists)):
                st.write(f'You selected {option}. It matches a list.')
            elif option:
                st.write(f'You selected {option}. It does not match a list.')
                definition = get_def(option)
            else:
                st.write('Awaiting your selection.')

            if st.button('Generate Alternatives'):
                if option in list(countries.Words):
                    cf_df = gen_cf_country(countries, doc, option)
                    st.success('Alternatives created.')
                elif option in list(professions.Words):
                    cf_df = gen_cf_profession(professions, doc, option)
                    st.success('Alternatives created.')
                else:
                    with st.sidebar:
                        ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
                    cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
                    st.success('Alternatives created.')

                if len(cf_df) != 0:
                    if alt_choice == "Similarity":
                        text2, text3 = get_min_max(cf_df, option)
                        col2.caption(f"This sentence is 'similar' to {option}.")
                        col3.caption(f"This sentence is 'not similar' to {option}.")
                    elif alt_choice == "Sampling (Random)":
                        text2, text3 = sampled_alts(cf_df, option)
                        col2.caption(f"This sentence is a random sample from the alternatives.")
                        col3.caption(f"This sentence is a random sample from the alternatives.")
                    elif alt_choice == "Sampling (Fixed)":
                        text2, text3 = sampled_alts(cf_df, option, fixed=True)
                        col2.caption(f"This sentence is a fixed sample of the alternatives.")
                        col3.caption(f"This sentence is a fixed sample of the alternatives.")
                    elif alt_choice == "Probability":
                        text2, text3 = abs_dif(cf_df, option)
                        col2.caption(f"This sentence is the closest prediction in the model.")
                        col3.caption(f"This sentence is the farthest prediction in the model.")
                    with st.sidebar:
                        st.info(f"Alternatives generated: {len(cf_df)}")

    with col2:
        if text2 != "":
            sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
            st.write(text2)
            probability2, sentiment2 = eval_pred(text2, return_all=True)
            nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
            exp2 = explainer.explain_instance(text2, predictor, num_features=15, num_samples=2000)
            lime_results2 = exp2.as_list()
            st.write(" ")
            st.altair_chart(lime_viz(lime_results2))

    with col3:
        if text3 != "":
            sim3 = cf_df.loc[cf_df['text'] == text3, 'similarity'].iloc[0]
            st.write(text3)
            probability3, sentiment3 = eval_pred(text3, return_all=True)
            nat_lang_explanation = construct_nlexp(text3,sentiment3,probability3)
            exp3 = explainer.explain_instance(text3, predictor, num_features=15, num_samples=2000)
            lime_results3 = exp3.as_list()
            st.write(" ")
            st.altair_chart(lime_viz(lime_results3))
            
if layout == 'VizNLC':
    with col1:

        #Use spaCy to make the sentence into a doc so we can do NLP.
        doc = nlp(st.session_state.input)
        #Evaluate the provided sentence for sentiment and probability.
        if st.session_state.input != "":
            st.caption("This is the sentence you provided.")
            st.write(text)
            probability, sentiment = eval_pred(text, return_all=True)
            options, lime = critical_words(st.session_state.input,options=True)
            nat_lang_explanation = construct_nlexp(text,sentiment,probability)
            st.write(" ")
            st.altair_chart(lime_viz(lime))

        #Allow the user to pick an option to generate counterfactuals from.
            option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
            if (any(option in sublist for sublist in word_lists)):
                st.write(f'You selected {option}. It matches a list.')
            elif option:
                st.write(f'You selected {option}. It does not match a list.')
                definition = get_def(option)
            else:
                st.write('Awaiting your selection.')

            if st.button('Generate Alternatives'):
                if option in list(countries.Words):
                    cf_df = gen_cf_country(countries, doc, option)
                    st.success('Alternatives created.')
                elif option in list(professions.Words):
                    cf_df = gen_cf_profession(professions, doc, option)
                    st.success('Alternatives created.')
                else:
                    with st.sidebar:
                        ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
                    cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
                    st.success('Alternatives created.')

                if len(cf_df) != 0:
                    if alt_choice == "Similarity":
                        text2, text3 = get_min_max(cf_df, option)
                        col2.caption(f"This sentence is 'similar' to {option}.")
                        col3.caption(f"This sentence is 'not similar' to {option}.")
                    elif alt_choice == "Sampling (Random)":
                        text2, text3 = sampled_alts(cf_df, option)
                        col2.caption(f"This sentence is a random sample from the alternatives.")
                        col3.caption(f"This sentence is a random sample from the alternatives.")
                    elif alt_choice == "Sampling (Fixed)":
                        text2, text3 = sampled_alts(cf_df, option, fixed=True)
                        col2.caption(f"This sentence is a fixed sample of the alternatives.")
                        col3.caption(f"This sentence is a fixed sample of the alternatives.")
                    elif alt_choice == "Probability":
                        text2, text3 = abs_dif(cf_df, option)
                        col2.caption(f"This sentence is the closest prediction in the model.")
                        col3.caption(f"This graph represents the {len(cf_df)} alternatives to {option}.")
                    with st.sidebar:
                        st.info(f"Alternatives generated: {len(cf_df)}")
    
    with col2:
        if text2 != "":
            sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
            st.write(text2)
            probability2, sentiment2 = eval_pred(text2, return_all=True)
            nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
            exp2 = explainer.explain_instance(text2, predictor, num_features=15, num_samples=2000)
            lime_results2 = exp2.as_list()
            st.write(" ")
            st.altair_chart(lime_viz(lime_results2))

    with col3:
        if not cf_df.empty:
            single_nearest = alt.selection_single(on='mouseover', nearest=True)
            full = alt.Chart(cf_df).encode(
                alt.X('similarity:Q', scale=alt.Scale(zero=False)),
                alt.Y('pred:Q'),
                color=alt.Color('Categories:N', legend=alt.Legend(title="Color of Categories")),
                size=alt.Size('seed:O'),
                tooltip=('Categories','text','pred')
            ).mark_circle(opacity=.5).properties(width=450, height=450).add_selection(single_nearest)
            st.altair_chart(full)