File size: 34,537 Bytes
03287bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8ea54fcd-ef4a-42cb-ae26-cbdc6f6ffc64",
   "metadata": {
    "tags": []
   },
   "source": [
    "# Duct Tape Pipeline\n",
    "To explore how users may interact with interactive visualizations of counterfactuals for evolving the Interactive Model Card, we will need to first find a way to generate counterfactuals based on a given input. We want the user to be able to provide their input and direct the system to generate counterfactuals based on a part of speech that is significant to the model. The system should then provide a data frame of counterfactuals to be used in an interactive visualization. Below is an example wireframe of the experience based on previous research.\n",
    "\n",
    "![wireframe](Assets/VizNLC-Wireframe-example.png)\n",
    "\n",
    "## Goals of this notebook\n",
    "* Test which libraries (Ex. [spaCy](https://spacy.io/) and [NLTK](https://www.nltk.org/)) will work\n",
    "* Identify defaults to use\n",
    "* Build a rudimentary script for generating counterfactuals from user input\n",
    "* Ensure the counterfactuals are in a useable format for visualization"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "736e6375-dd6d-4188-b8b1-92bded2bcd02",
   "metadata": {},
   "source": [
    "## Loading the libraries and models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7f581785-e642-4f74-9f67-06a63820eaf2",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Import the libraries we know we'll need for the Generator.\n",
    "import pandas as pd, spacy, nltk, numpy as np\n",
    "from spacy import displacy\n",
    "from spacy.matcher import Matcher\n",
    "#!python -m spacy download en_core_web_sm\n",
    "nlp = spacy.load(\"en_core_web_sm\")\n",
    "lemmatizer = nlp.get_pipe(\"lemmatizer\")\n",
    "\n",
    "#Import the libraries to support the model, predictions, and LIME.\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline\n",
    "import lime\n",
    "import torch\n",
    "import torch.nn.functional as F\n",
    "from lime.lime_text import LimeTextExplainer\n",
    "\n",
    "#Import the libraries for generating interactive visualizations.\n",
    "import altair as alt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cbe2b292-e33e-4915-8e61-bba5327fb643",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Defining all necessary variables and instances.\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
    "class_names = ['negative', 'positive']\n",
    "explainer = LimeTextExplainer(class_names=class_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "197c3e26-0fdf-49c6-9135-57f1fd55d3e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Defining a Predictor required for LIME to function.\n",
    "def predictor(texts):\n",
    "    outputs = model(**tokenizer(texts, return_tensors=\"pt\", padding=True))\n",
    "    probas = F.softmax(outputs.logits, dim=1).detach().numpy()\n",
    "    return probas"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e731dcbb-4fcf-41c6-9493-edef02fdb1b6",
   "metadata": {},
   "source": [
    "## Exploring concepts to see what might work\n",
    "To begin building the pipeline I started by identifying whether or not I needed to build my own matcher or if spaCy has something built in that would allow us to make it easier. Having to build our own matcher, to account for each of the possible patterns, would be exceptionally cumbersome with all of the variations we need to look out for. Instead, I found that using the built in `noun_chunks` attribute allows for a simplification to the parts of speech we most care about. \n",
    "* I built a few helper functions from tutorials to explore the parts-of-speech within given sentences and the way `noun_chunks` work\n",
    "* I explore dusing `displacy` as a means of visualizing sentences to call out what the pre-trained models already understand"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1f2eca3c-525c-4e29-8cc1-c87e89a3fadf",
   "metadata": {},
   "outputs": [],
   "source": [
    "#A quick test of Noun Chunks\n",
    "text = \"The movie was filmed in New Zealand.\"\n",
    "doc = nlp(text)\n",
    "def n_chunk(doc):\n",
    "    for chunk in doc.noun_chunks:\n",
    "        print(f\"Text: {chunk.text:<12}| Root:{chunk.root.text:<12}| Root Dependency: {chunk.root.dep_:<12}| Root Head: {chunk.root.head.text:<12}\")\n",
    "n_chunk(doc)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "98978c29-a39c-48e3-bdbb-b74388ded6bc",
   "metadata": {},
   "outputs": [],
   "source": [
    "#The user will need to enter text. For now, we're going to provide a series of sentences generated to have things we care about. For clarity \"upt\" means \"user provide text\".\n",
    "upt1 = \"I like movies starring black actors.\"\n",
    "upt2 = \"I am a black trans-woman.\"\n",
    "upt3 = \"Native Americans deserve to have their land back.\"\n",
    "upt4 = \"This movie was filmed in Iraq.\"\n",
    "\n",
    "#Here I provide a larger text with mixed messages one sentence per line.\n",
    "text1 = (\n",
    "\"I like movies starring black actors.\"\n",
    "\"I am a black trans-woman.\"\n",
    "\"Native Americans deserve to have their land back.\"\n",
    "\"This movie was filmed in Iraq.\"\n",
    "\"The Chinese cat and the African bat walked into a Jamaican bar.\"\n",
    "\"There once was a flexible pole that met an imovable object.\"\n",
    "\"A Catholic nun, a Buddhist monk, a satanic cultist, and a Wiccan walk into your garage.\")\n",
    "\n",
    "doc1 = nlp(upt1)\n",
    "doc2 = nlp(upt2)\n",
    "doc3 = nlp(upt3)\n",
    "doc4 = nlp(upt4)\n",
    "doct = nlp(text1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "38023eca-b224-412d-aa71-02bd694530e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Using displacy to explore how the NLP model views sentences.\n",
    "displacy.render(doc, style=\"ent\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c28edec8-dc30-4ef9-8c1e-131b0e1b1a45",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Another visual for understanding how the model views sentences.\n",
    "displacy.render(doc, style=\"dep\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "dd0d5f8e-ee80-48f7-be92-effa5f84c723",
   "metadata": {},
   "outputs": [],
   "source": [
    "#A simple token to print out the \n",
    "def text_pos(doc):\n",
    "    for token in doc:\n",
    "        # Get the token text, part-of-speech tag and dependency label\n",
    "        token_text = token.text\n",
    "        token_pos = token.pos_\n",
    "        token_dep = token.dep_\n",
    "        token_ent = token.ent_type_\n",
    "        token_morph = token.morph\n",
    "        # This is for formatting only\n",
    "        print(f\"Text: {token_text:<12}| Part of Speech: {token_pos:<10}| Dependency: {token_dep:<10}| Entity: {token_ent:<10} | Morph: {token_morph}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "5dfee095-3852-4dba-a7dc-5519e8ec6eaa",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Text: Who         | Part of Speech: PRON      | Dependency: nsubj     | Entity:            | Morph: \n",
      "Text: put         | Part of Speech: VERB      | Dependency: ROOT      | Entity:            | Morph: Tense=Past|VerbForm=Fin\n",
      "Text: a           | Part of Speech: DET       | Dependency: det       | Entity:            | Morph: Definite=Ind|PronType=Art\n",
      "Text: tiny        | Part of Speech: ADJ       | Dependency: amod      | Entity:            | Morph: Degree=Pos\n",
      "Text: pickle      | Part of Speech: NOUN      | Dependency: dobj      | Entity:            | Morph: Number=Sing\n",
      "Text: in          | Part of Speech: ADP       | Dependency: prep      | Entity:            | Morph: \n",
      "Text: the         | Part of Speech: DET       | Dependency: det       | Entity:            | Morph: Definite=Def|PronType=Art\n",
      "Text: jar         | Part of Speech: NOUN      | Dependency: pobj      | Entity:            | Morph: Number=Sing\n"
     ]
    }
   ],
   "source": [
    "x = nlp(\"Who put a tiny pickle in the jar\")\n",
    "text_pos(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "2485d88d-2dd4-4fa3-9d62-4dcbec4e9138",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(x[0].morph)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "013af6ac-f7d1-41d2-a601-b0f9a4870815",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Instantiate a matcher and use it to test some patterns.\n",
    "matcher = Matcher(nlp.vocab)\n",
    "pattern = [{\"ENT_TYPE\": {\"IN\":[\"NORP\",\"GPE\"]}}]\n",
    "matcher.add(\"proper_noun\", [pattern])\n",
    "pattern_test = [{\"DEP\": \"amod\"},{\"DEP\":\"attr\"},{\"TEXT\":\"-\"},{\"DEP\":\"attr\",\"OP\":\"+\"}]\n",
    "matcher.add(\"amod_attr\",[pattern_test])\n",
    "pattern_an = [{\"DEP\": \"amod\"},{\"POS\":{\"IN\":[\"NOUN\",\"PROPN\"]}},{\"DEP\":{\"NOT_IN\":[\"attr\"]}}]\n",
    "matcher.add(\"amod_noun\", [pattern_an])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f6ac821d-7b56-446e-b9ca-42a5f5afd198",
   "metadata": {},
   "outputs": [],
   "source": [
    "def match_this(matcher, doc):\n",
    "    matches = matcher(doc)\n",
    "    for match_id, start, end in matches:\n",
    "        matched_span = doc[start:end]\n",
    "        print(f\"Mached {matched_span.text} by the rule {nlp.vocab.strings[match_id]}.\")\n",
    "    return matches"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "958e4dc8-6652-4f32-b7ae-6aa5ee287cf7",
   "metadata": {},
   "outputs": [],
   "source": [
    "match_this(matcher, doct)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5bf40fa5-b636-47f7-98b2-e872c78e7114",
   "metadata": {},
   "outputs": [],
   "source": [
    "text_pos(doc3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5365304-5edb-428d-abf5-d579dcfbc269",
   "metadata": {},
   "outputs": [],
   "source": [
    "n_chunk(doc3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7f3d3c8-65a1-433f-a47c-adcaaa2353e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "displacy.render(doct, style=\"ent\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84df8e30-d142-4e5b-b3a9-02e3133ceba9",
   "metadata": {},
   "outputs": [],
   "source": [
    "txt = \"Savannah is a city in Georgia, in the United States\"\n",
    "doc = nlp(txt)\n",
    "displacy.render(doc, style=\"ent\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a85f713-92bc-48ba-851e-de627d7e8c77",
   "metadata": {},
   "outputs": [],
   "source": [
    "displacy.render(doc2, style='dep')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "032f1134-7560-400b-824b-bc0196058b66",
   "metadata": {},
   "outputs": [],
   "source": [
    "n_chunk(doct)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "188044a1-4cf4-4141-a520-c5f11198aed8",
   "metadata": {},
   "source": [
    "* The Model does not recognize `wiccan` as a NORP but it will recognize `Wiccan` as NORP\n",
    "* The Model does not know what to do with `-` and makes a mess of `trans-woman` because of this"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2dc82250-e26e-49d5-a7f2-d4eeda170e4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "chunks = list(doc1.noun_chunks)\n",
    "print(chunks[-1][-2].pos_)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c23d48c4-f5ab-4428-9244-0786e9903a8e",
   "metadata": {},
   "source": [
    "## Building the Duct-Tape Pipeline cell-by-cell"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ed22421-4401-482e-b54a-ee70d3187037",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Lists of important words\n",
    "gender = [\"man\", \"woman\",\"girl\",\"boy\",\"male\",\"female\",\"husband\",\"wife\",\"girlfriend\",\"boyfriend\",\"brother\",\"sister\",\"aunt\",\"uncle\",\"grandma\",\"grandpa\",\"granny\",\"granps\",\"grandmother\",\"grandfather\",\"mama\",\"dada\",\"Ma\",\"Pa\",\"lady\",\"gentleman\"]\n",
    "#consider pulling ethnicities from https://github.com/cgio/global-ethnicities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b02a5d4-8a6b-4e5e-8f15-4f9182fe341f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def select_crit(document, options=False, limelist=False):\n",
    "    '''This function is meant to select the critical part of a sentence. Critical, in this context means\n",
    "    the part of the sentence that is either: A) a PROPN from the correct entity group; B) an ADJ associated with a NOUN;\n",
    "    C) a NOUN that represents gender. It also checks this against what the model thinks is important if the user defines \"options\" as \"LIME\" or True.'''\n",
    "    chunks = list(document.noun_chunks)\n",
    "    pos_options = []\n",
    "    lime_options = []\n",
    "    \n",
    "    #Identify what the model cares about.\n",
    "    if options:\n",
    "        exp = explainer.explain_instance(document.text, predictor, num_features=20, num_samples=2000)\n",
    "        results = exp.as_list()[:10]\n",
    "        #prints the results from lime for QA.\n",
    "        if limelist == True:\n",
    "            print(results)\n",
    "        for feature in results:\n",
    "            lime_options.append(feature[0])\n",
    "    \n",
    "    #Identify what we care about \"parts of speech\"\n",
    "    for chunk in chunks:\n",
    "        #The use of chunk[-1] is due to testing that it appears to always match the root\n",
    "        root = chunk[-1]\n",
    "        #This currently matches to a list I've created. I don't know the best way to deal with this so I'm leaving it as is for the moment.\n",
    "        if root.text.lower() in gender:\n",
    "            cur_values = [token.text for token in chunk if token.pos_ in [\"NOUN\",\"ADJ\"]]\n",
    "            if (all(elem in lime_options for elem in cur_values) and ((options == \"LIME\") or (options == True))) or ((options != \"LIME\") and (options != True)):\n",
    "                pos_options.extend(cur_values)\n",
    "                #print(f\"From {chunk.text}, {cur_values} added to pos_options due to gender.\") #for QA\n",
    "        #This is currently set to pick up entities in a particular set of groups (which I recently expanded). Should it just pick up all named entities?\n",
    "        elif root.ent_type_ in [\"GPE\",\"NORP\",\"DATE\",\"EVENT\"]:\n",
    "            cur_values = []\n",
    "            if (len(chunk) > 1) and (chunk[-2].dep_ == \"compound\"):\n",
    "                #creates the compound element of the noun\n",
    "                compound = [x.text for x in chunk if x.dep_ == \"compound\"]\n",
    "                print(f\"This is the contents of {compound} and it is {all(elem in lime_options for elem in compound)} that all elements are present in {lime_options}.\") #for QA\n",
    "                #checks to see all elements in the compound are important to the model or use the compound if not checking importance.\n",
    "                if (all(elem in lime_options for elem in compound) and ((options == \"LIME\") or (options == True))) or ((options != \"LIME\") and (options != True)):\n",
    "                    #creates a span for the entirety of the compound noun and adds it to the list.\n",
    "                    span = -1 * (1 + len(compound))\n",
    "                    pos_options.append(chunk[span:].text)\n",
    "                    cur_values + [token.text for token in chunk if token.pos_ == \"ADJ\"]\n",
    "            else: \n",
    "                cur_values = [token.text for token in chunk if (token.ent_type_ in [\"GPE\",\"NORP\",\"DATE\",\"EVENT\"]) or (token.pos_ == \"ADJ\")]\n",
    "            if (all(elem in lime_options for elem in cur_values) and ((options == \"LIME\") or (options == True))) or ((options != \"LIME\") and (options != True)):\n",
    "                pos_options.extend(cur_values)\n",
    "                print(f\"From {chunk.text}, {cur_values} and {pos_options} added to pos_options due to entity recognition.\") #for QA\n",
    "        elif len(chunk) > 1:\n",
    "            cur_values = [token.text for token in chunk if token.pos_ in [\"NOUN\",\"ADJ\"]]\n",
    "            if (all(elem in lime_options for elem in cur_values) and ((options == \"LIME\") or (options == True))) or ((options != \"LIME\") and (options != True)):\n",
    "                pos_options.extend(cur_values)\n",
    "                print(f\"From {chunk.text}, {cur_values} added to pos_options due to wildcard.\") #for QA\n",
    "        else:\n",
    "            print(f\"No options added for \\'{chunk.text}\\' \")\n",
    "    \n",
    "    #Return the correct set of options based on user input, defaults to POS for simplicity.\n",
    "    if options == \"LIME\":\n",
    "        return lime_options\n",
    "    else:\n",
    "        return pos_options"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa95e9fe-36ea-4b95-ab51-6bb82f745c23",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Testing a method to make sure I had the ability to match one list inside the other. Now incorporated in the above function's logic.\n",
    "one = ['a','b','c']\n",
    "two = ['a','c']\n",
    "all(elem in one for elem in two)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d43e202e-64b9-4cea-b117-82492c9ee5f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Test to make sure all three options work\n",
    "pos4 = select_crit(doc4)\n",
    "lime4 = select_crit(doc4,options=\"LIME\")\n",
    "final4 = select_crit(doc4,options=True,limelist=True)\n",
    "print(pos4, lime4, final4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5623015e-fdb2-44f0-b5ac-812203b639b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "#This is a test to make sure compounds of any length are captured. \n",
    "txt = \"I went to Papua New Guinea for Christmas Eve and New Years.\"\n",
    "doc_t = nlp(txt)\n",
    "select_crit(doc_t)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58be22eb-a5c3-4a01-820b-45d190fce52d",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Test to make sure all three options work. A known issue is that if we combine the compounds then they will not end up in the final_options...\n",
    "pos_t = select_crit(doc_t)\n",
    "lime_t = select_crit(doc_t,options=\"LIME\")\n",
    "final_t = select_crit(doc_t,options=True,limelist=True)\n",
    "print(pos_t, lime_t, final_t)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1158de94-1472-4001-b3a1-42a488bcb20f",
   "metadata": {},
   "outputs": [],
   "source": [
    "select_crit(doc_t,options=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05063ede-422f-4536-8408-ceb5441adbe8",
   "metadata": {},
   "source": [
    "> Note `Papua` and `Eve` have such low impact on the model that they do not always appear... so there will always be limitations to matching."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c7c1ca9-4962-4fbe-b18b-1e20a223aff9",
   "metadata": {},
   "outputs": [],
   "source": [
    "select_crit(doc_t,options=\"LIME\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c70387a5-c431-43a5-a3b8-7533268a94e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "displacy.render(doc_t, style=\"ent\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4b92d276-7d67-4c1c-940b-d3b2dcc756b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "#This run clearly indicates that this pipeline from spaCy does not know what to do with hyphens(\"-\") and that we need to be aware of that.\n",
    "choices = select_crit(doct)\n",
    "choices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ea6b29d0-d0fa-4eb3-af9c-970759124145",
   "metadata": {},
   "outputs": [],
   "source": [
    "user_choice = choices[2]\n",
    "matcher2 = Matcher(nlp.vocab)\n",
    "pattern = [{\"TEXT\": user_choice}]\n",
    "matcher2.add(\"user choice\", [pattern])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d32754b8-f1fa-4781-a6b0-829ad7ec2e50",
   "metadata": {},
   "outputs": [],
   "source": [
    "#consider using https://github.com/writerai/replaCy instead\n",
    "match_id, start, end = match_this(matcher2,doc2)[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a0362734-020b-49ad-b566-fdc7196e705c",
   "metadata": {},
   "outputs": [],
   "source": [
    "docx = doc2.text.replace(user_choice,\"man\")\n",
    "docx"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf0512b6-336e-4842-9bde-34e03a1ca7c6",
   "metadata": {},
   "source": [
    "### Testing predictions and visualization\n",
    "Here I will attempt to import the model from huggingface, generate predictions for each of the sentences, and then visualize those predictions into a dot plot. If I can get this to work then I will move on to testing a full pipeline for letting the user pick which part of the sentence they wish to generate counterfactuals for."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0bd4134-3b22-4ae8-870c-3a66c1cf8b23",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Testing to see how to get predictions from the model. Ultimately, this did not work.\n",
    "token = tokenizer(upt4, return_tensors=\"pt\")\n",
    "labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1\n",
    "outputs = model(**token, labels=labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74c639bb-e74a-4a46-8047-3552265ae6a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Discovering that there's a pipeline specifically to provide scores. \n",
    "#I used it to get a list of lists of dictionaries that I can then manipulate to calculate the proper prediction score.\n",
    "pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e1ff15d-0fb9-475b-bd24-4548c0782343",
   "metadata": {},
   "outputs": [],
   "source": [
    "preds = pipe(upt4)\n",
    "print(preds[0][0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8abb9ca-36cf-441a-9236-1f7e44331b53",
   "metadata": {},
   "outputs": [],
   "source": [
    "score_1 = preds[0][0]['score']\n",
    "score_2 = (score_1 - .5) * 2\n",
    "print(score_1, score_2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8726a284-99bd-47f1-9756-1c3ae603db10",
   "metadata": {},
   "outputs": [],
   "source": [
    "def eval_pred(text):\n",
    "    '''A basic function for evaluating the prediction from the model and turning it into a visualization friendly number.'''\n",
    "    preds = pipe(text)\n",
    "    neg_score = preds[0][0]['score']\n",
    "    pos_score = preds[0][1]['score']\n",
    "    if pos_score >= neg_score:\n",
    "        return pos_score\n",
    "    if neg_score >= pos_score:\n",
    "        return -1 * neg_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f38f5061-f30a-4c81-9465-37951c3ad9f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def eval_pred_test(text, return_all = False):\n",
    "    '''A basic function for evaluating the prediction from the model and turning it into a visualization friendly number.'''\n",
    "    preds = pipe(text)\n",
    "    neg_score = -1 * preds[0][0]['score']\n",
    "    sent_neg = preds[0][0]['label']\n",
    "    pos_score = preds[0][1]['score']\n",
    "    sent_pos = preds[0][1]['label']\n",
    "    prediction = 0\n",
    "    sentiment = ''\n",
    "    if pos_score > abs(neg_score):\n",
    "        prediction = pos_score\n",
    "        sentiment = sent_pos\n",
    "    elif abs(neg_score) > pos_score:\n",
    "        prediction = neg_score\n",
    "        sentiment = sent_neg\n",
    "        \n",
    "    if return_all:\n",
    "        return prediction, sentiment\n",
    "    else:\n",
    "        return prediction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abd5dd8c-8cff-4865-abf1-f5a744f2203b",
   "metadata": {},
   "outputs": [],
   "source": [
    "score = eval_pred(upt4)\n",
    "og_data = {'Country': ['Iraq'], 'Continent': ['Asia'], 'text':[upt4], 'pred':[score]}\n",
    "og_df = pd.DataFrame(og_data)\n",
    "og_df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b349a87-fe83-4045-a63a-d054489bb461",
   "metadata": {},
   "source": [
    "## Load the dummy countries I created to test generating counterfactuals\n",
    "I decided to test the pipeline with a known problem space. Taking the text from Aurélien Géron's observations in twitter, I built a built a small scale test using the learnings I had to prove that we can identify a particular part of speech, use it to generate counterfactuals, and then build a visualization off it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "46ab3332-964c-449f-8cef-a9ff7df397a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#load my test data from https://github.com/dbouquin/IS_608/blob/master/NanosatDB_munging/Countries-Continents.csv\n",
    "df = pd.read_csv(\"Assets/Countries/countries.csv\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "51c75894-80af-4625-8ce8-660e500b496b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Note: we will need to build the function that lets the user choose from the options available. For now I have hard coded it as \"selection\", from \"user_options\".\n",
    "user_options = select_crit(doc4)\n",
    "print(user_options)\n",
    "selection = user_options[1]\n",
    "selection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d6419f1-bf7d-44bc-afb8-ac26ef9002df",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Create a function that generates the counterfactuals within a data frame.\n",
    "def gen_cf_country(df,document,selection):\n",
    "    df['text'] = df.Country.apply(lambda x: document.text.replace(selection,x))\n",
    "    df['prediction'] = df.text.apply(eval_pred_test)\n",
    "    #added this because I think it will make the end results better if we ensure the seed is in the data we generate counterfactuals from.\n",
    "    df['seed'] = df.Country.apply(lambda x: 'seed' if x == selection else 'alternative')\n",
    "    return df\n",
    "\n",
    "df = gen_cf_country(df,doc4,selection)\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aec241a6-48c3-48c6-9e7f-d22612eaedff",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Display Counterfactuals and Original in a layered chart. I couldn't get this to provide a legend.\n",
    "og = alt.Chart(og_df).encode(\n",
    "    x='Continent:N',\n",
    "    y='pred:Q'\n",
    ").mark_square(color='green', size = 200, opacity=.5)\n",
    "\n",
    "cf = alt.Chart(df).encode(\n",
    "    x='Continent:N',  # specify nominal data\n",
    "    y='prediction:Q',  # specify quantitative data\n",
    ").mark_circle(color='blue', size=50, opacity =.25)\n",
    "\n",
    "alt_plot = alt.LayerChart(layer=[cf,og], width = 300)\n",
    "alt_plot"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ecb9dd41-2fab-49bd-bae5-30300ce39e41",
   "metadata": {},
   "outputs": [],
   "source": [
    "single_nearest = alt.selection_single(on='mouseover', nearest=True)\n",
    "full = alt.Chart(df).encode(\n",
    "    alt.X('Continent:N'),  # specify nominal data\n",
    "    alt.Y('prediction:Q'),  # specify quantitative data\n",
    "    color=alt.Color('seed:N', legend=alt.Legend(title=\"Seed or Alternative\")),\n",
    "    size=alt.Size('seed:N', alt.scale(domain=[50,100])),\n",
    "    tooltip=('Country','prediction')\n",
    ").mark_circle(opacity=.5).properties(width=300).add_selection(single_nearest)\n",
    "\n",
    "full"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56bc30d7-03a5-43ff-9dfe-878197628305",
   "metadata": {},
   "outputs": [],
   "source": [
    "df2 = df.nlargest(5, 'prediction')\n",
    "df3 = df.nsmallest(5, 'prediction')\n",
    "frames = [df2,df3]\n",
    "results = pd.concat(frames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1610bb48-c9b9-4bee-bcb5-999886acb9e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "bar = alt.Chart(results).encode(  \n",
    "    alt.X('prediction:Q'), \n",
    "    alt.Y('Country:N', sort=\"-x\"),\n",
    "    color=alt.Color('seed:N', legend=alt.Legend(title=\"Seed or Alternative\")),\n",
    "    size='seed:N',\n",
    "    tooltip=('Country','prediction')\n",
    ").mark_circle().properties(width=300).add_selection(single_nearest)\n",
    "\n",
    "bar"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "84c40b74-95be-4c19-bd57-74e6004b950c",
   "metadata": {},
   "source": [
    "#### QA"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d15c7d8-9fdb-4c5b-84fa-599839cbceac",
   "metadata": {},
   "outputs": [],
   "source": [
    "qa_txt = \"They serve halal food in Iraq and Egypt.\"\n",
    "qa_doc = nlp(qa_txt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6956ddf-9287-419a-bb08-a3618f77700a",
   "metadata": {},
   "outputs": [],
   "source": [
    "displacy.render(qa_doc, style=\"dep\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "88768d68-fe44-49ab-ac12-d41e6716b3b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "select_crit(qa_doc)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7bbc6c2e-df5d-4076-8532-8648fd818be4",
   "metadata": {},
   "source": [
    "# NLC-Gen\n",
    "### A Natural Language Counterfactual Generator for Exploring Bias in Sentiment Analysis Algorithms\n",
    "\n",
    "##### Overview\n",
    "This project is an extension of [Interactive Model Cards](https://github.com/amcrisan/interactive-model-cards). It focuses on providing a person more ways to explore the bias of a model through the generation of alternatives (technically [counterfactuals](https://plato.stanford.edu/entries/counterfactuals/#WhatCoun)). We believe the use of alternatives people can better understand the limitations of a model and develop productive skepticism around its usage and trustworthiness.\n",
    "\n",
    "##### Set up\n",
    "\n",
    "Download the files from Github then perform the commands below in \n",
    "```sh\n",
    "cd NLC-Gen\n",
    "pipenv install\n",
    "pipenv shell\n",
    "python -m spacy download en_core_web_lg\n",
    "streamlit run NLC-app.py\n",
    "```\n",
    "\n",
    "##### Known Limitations\n",
    "* Words not in the spaCy vocab for `en_core_web_lg` won't have vectors and so won't have the ability to create similarity scores.\n",
    "* WordNet provides many limitations due to its age and lack of funding for ongoing maintenance. It provides access to a large variety of the English language but certain words simply do not exist.\n",
    "* There are currently only 2 lists (Countries and Professions). We would like to find community curated lists for: Race, Sexual Orientation and Gender Identity (SOGI), Religion, age, and protected status.\n",
    "\n",
    "\n",
    "##### Key Dependencies and Packages\n",
    "\n",
    "1. [Hugging Face Transformers](https://huggingface.co/) - the model we've designed this iteration for is hosted on hugging face. It is: [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).\n",
    "2. [Streamlit](https://streamlit.io) - This is the library we're using to build the prototype app because it is easy to stand up and quick to fix.\n",
    "3. [spaCy](https://spacy.io) - This is the main NLP Library we're using and it runs most of the text manipulation we're doing as part of the project.\n",
    "4. [NLTK + WordNet](https://www.nltk.org/howto/wordnet.html) - This is the initial lexical database we're using because it is accessible directly through Python and it is free. We will be considering a move to [ConceptNet](https://conceptnet.io/) for future iterations based on better lateral movement across edges.\n",
    "5. [Lime](https://github.com/marcotcr/lime) - We chose Lime over Shap because Lime has more of the functionality we need. Shap appears to provide greater performance but is not as easily suited to our original designs.\n",
    "6. [Altair](https://altair-viz.github.io/user_guide/encoding.html) - We're using Altair because it's well integrated into Streamlit.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa224bed-3630-4485-8dbc-670aaf5e6b0a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}