File size: 2,667 Bytes
39e6ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import json
import sys

from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import (
    LoadDataFromDicts,
    TextGenerationToArgilla,
    ExpandColumns,
)
from distilabel.steps.tasks import SelfInstruct
from huggingface_hub import hf_hub_download


def run(repo_id):
    # Get super secret tokens

    hub_token = os.environ.get("HF_TOKEN")

    with open(
        hf_hub_download(
            repo_id=repo_id, filename="pipeline_params.json", repo_type="dataset"
        ),
        "r",
    ) as f:
        params = json.load(f)

    self_instruct_base_url = params.get("self_instruct_base_url")

    self_intruct_num_generations = params.get("self_instruct_num_generations", 2)
    domain_expert_num_generations = params.get("domain_expert_num_generations", 2)
    self_instruct_temperature = params.get("self_instruct_temperature", 0.9)
    domain_expert_temperature = params.get("domain_expert_temperature", 0.9)
    self_instruct_max_new_tokens = params.get("self_instruct_max_new_tokens", 1024)
    domain_expert_max_new_tokens = params.get("domain_expert_max_new_tokens", 1024)

    with open(
        hf_hub_download(
            repo_id=repo_id, filename="seed_data.json", repo_type="dataset"
        ),
        "r",
    ) as f:
        seed_data = json.load(f)

    application_instruction = seed_data.get("application_instruction")
    domain_expert_prompt = seed_data.get("domain_expert_prompt")
    domain_name = seed_data.get("domain")
    terms = seed_data.get("seed_terms")

    with Pipeline(domain_name) as pipeline:
        load_data = LoadDataFromDicts(
            name="load_data",
            batch_size=64,
            data=[{"input": term} for term in terms],
        )

        self_instruct = SelfInstruct(
            name="self_instruct",
            num_instructions=self_intruct_num_generations,
            input_batch_size=8,
            llm=InferenceEndpointsLLM(
                api_key=hub_token,
                base_url=self_instruct_base_url,
            ),
            application_description=application_instruction,
        )
        # Connect up the pipeline

        load_data.connect(self_instruct)

    # Run the pipeline

    pipeline.run(
        use_cache=False,
        parameters={
            "self_instruct": {
                "llm": {
                    "generation_kwargs": {
                        "max_new_tokens": self_instruct_max_new_tokens,
                        "temperature": self_instruct_temperature,
                    },
                }
            },
        },
    )


if __name__ == "__main__":
    run(sys.argv[1])