File size: 8,444 Bytes
8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 798f8ba 8773ff3 4b83e74 8773ff3 4b83e74 8773ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import json
import streamlit as st
from hub import push_dataset_to_hub
from infer import query
from defaults import (
DEFAULT_DOMAIN,
DEFAULT_PERSPECTIVES,
DEFAULT_TOPICS,
DEFAULT_EXAMPLES,
DEFAULT_SYSTEM_PROMPT,
N_PERSPECTIVES,
N_TOPICS,
SEED_DATA_PATH,
PIPELINE_PATH,
DATASET_REPO_ID,
)
from utils import project_sidebar
st.set_page_config(
page_title="Domain Data Grower",
page_icon="π§βπΎ",
)
project_sidebar()
################################################################################
# HEADER
################################################################################
st.header("π§βπΎ Domain Data Grower")
st.divider()
st.subheader(
"Step 2. Define the specific domain that you want to generate synthetic data for.",
)
st.write(
"Define the project details, including the project name, domain, and API credentials"
)
################################################################################
# Domain Expert Section
################################################################################
(
tab_domain_expert,
tab_domain_perspectives,
tab_domain_topics,
tab_examples,
) = st.tabs(
tabs=[
"π©πΌβπ¬ Domain Expert",
"π Domain Perspectives",
"πΈοΈ Domain Topics",
"π Examples",
]
)
with tab_domain_expert:
st.text("Define the domain expertise that you want to train a language model")
st.info(
"A domain expert is a person who is an expert in a particular field or area. For example, a domain expert in farming would be someone who has extensive knowledge and experience in farming and agriculture."
)
domain = st.text_input("Domain Name", DEFAULT_DOMAIN)
domain_expert_prompt = st.text_area(
label="Domain Expert Definition",
value=DEFAULT_SYSTEM_PROMPT,
height=200,
)
################################################################################
# Domain Perspectives
################################################################################
with tab_domain_perspectives:
st.text("Define the different perspectives from which the domain can be viewed")
st.info(
"""
Perspectives are different viewpoints or angles from which a domain can be viewed.
For example, the domain of farming can be viewed from the perspective of a commercial
farmer or an independent family farmer."""
)
perspectives = st.session_state.get(
"perspectives",
[DEFAULT_PERSPECTIVES[0]],
)
perspectives_container = st.container()
perspectives = [
perspectives_container.text_input(
f"Domain Perspective {i + 1}", value=perspective
)
for i, perspective in enumerate(perspectives)
]
if st.button("Add Perspective", key="add_perspective"):
n = len(perspectives)
value = DEFAULT_PERSPECTIVES[n] if n < N_PERSPECTIVES else ""
perspectives.append(
perspectives_container.text_input(f"Domain Perspective {n + 1}", value="")
)
st.session_state["perspectives"] = perspectives
################################################################################
# Domain Topics
################################################################################
with tab_domain_topics:
st.text("Define the main themes or subjects that are relevant to the domain")
st.info(
"""Topics are the main themes or subjects that are relevant to the domain. For example, the domain of farming can have topics like soil health, crop rotation, or livestock management."""
)
topics = st.session_state.get(
"topics",
[DEFAULT_TOPICS[0]],
)
topics_container = st.container()
topics = [
topics_container.text_input(f"Domain Topic {i + 1}", value=topic)
for i, topic in enumerate(topics)
]
if st.button("Add Topic", key="add_topic"):
n = len(topics)
value = DEFAULT_TOPICS[n] if n < N_TOPICS else ""
topics.append(topics_container.text_input(f"Domain Topics {n + 1}", value=""))
st.session_state["topics"] = topics
################################################################################
# Examples Section
################################################################################
with tab_examples:
st.text(
"Add high-quality questions and answers that can be used to generate synthetic data"
)
st.info(
"""
Examples are high-quality questions and answers that can be used to generate
synthetic data for the domain. These examples will be used to train the language model
to generate questions and answers.
"""
)
questions_answers = st.session_state.get(
"questions_answers",
[
(
st.text_area(
"Question", key="question_0", value=DEFAULT_EXAMPLES[0]["question"]
),
st.text_area(
"Answer", key="answer_0", value=DEFAULT_EXAMPLES[0]["answer"]
),
)
],
)
if st.button("Add New Example"):
n = len(questions_answers)
default_question, default_answer = DEFAULT_EXAMPLES[n].values()
st.subheader(f"Example {n + 1}")
if st.button("Generate New Answer", key=f"generate_{n}"):
default_answer = query(default_question)
_question = st.text_area(
"Question", key=f"question_{n}", value=default_question
)
_answer = st.text_area("Answer", key=f"answer_{n}", value=default_answer)
questions_answers.append((_question, _answer))
st.session_state["questions_answers"] = questions_answers
################################################################################
# Setup Dataset on the Hub
################################################################################
st.divider()
hub_username = DATASET_REPO_ID.split("/")[0]
project_name = DATASET_REPO_ID.split("/")[1]
st.write("Define the dataset repo details on the Hub")
st.session_state["project_name"] = st.text_input("Project Name", project_name)
st.session_state["hub_username"] = st.text_input("Hub Username", hub_username)
st.session_state["hub_token"] = st.text_input("Hub Token", type="password", value=None)
if all(
(
st.session_state.get("project_name"),
st.session_state.get("hub_username"),
st.session_state.get("hub_token"),
)
):
st.success(f"Using the dataset repo {hub_username}/{project_name} on the Hub")
if st.button("π€ Push Dataset Seed") and all(
(
domain,
domain_expert_prompt,
perspectives,
topics,
questions_answers,
)
):
if all(
(
st.session_state.get("project_name"),
st.session_state.get("hub_username"),
st.session_state.get("hub_token"),
)
):
project_name = st.session_state["project_name"]
hub_username = st.session_state["hub_username"]
hub_token = st.session_state["hub_token"]
else:
st.error(
"Please create a dataset repo on the Hub before pushing the dataset seed"
)
st.stop()
perspectives = list(filter(None, perspectives))
topics = list(filter(None, topics))
examples = [{"question": q, "answer": a} for q, a in questions_answers]
domain_data = {
"domain": domain,
"perspectives": perspectives,
"topics": topics,
"examples": examples,
"domain_expert_prompt": domain_expert_prompt,
}
with open(SEED_DATA_PATH, "w") as f:
json.dump(domain_data, f, indent=2)
push_dataset_to_hub(
domain_seed_data_path=SEED_DATA_PATH,
project_name=project_name,
domain=domain,
hub_username=hub_username,
hub_token=hub_token,
pipeline_path=PIPELINE_PATH,
)
st.success(
f"Dataset seed created and pushed to the Hub. Check it out [here](https://huggingface.co/datasets/{hub_username}/{project_name})"
)
st.write("You can now move on to runnning your distilabel pipeline.")
st.page_link(
page="pages/3_π± Generate Dataset.py",
label="Generate Dataset",
icon="π±",
)
else:
st.info(
"Please fill in all the required domain fields to push the dataset seed to the Hub"
)
|