File size: 7,625 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

import ldm_patched.utils.path_utils
import ldm_patched.modules.sd
import ldm_patched.modules.model_sampling
import torch

class LCM(ldm_patched.modules.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        x0 = model_input - model_output * sigma

        sigma_data = 0.5
        scaled_timestep = timestep * 10.0 #timestep_scaling

        c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5

        return c_out * x0 + c_skip * model_input

class ModelSamplingDiscreteDistilled(torch.nn.Module):
    original_timesteps = 50

    def __init__(self):
        super().__init__()
        self.sigma_data = 1.0
        timesteps = 1000
        beta_start = 0.00085
        beta_end = 0.012

        betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)

        self.skip_steps = timesteps // self.original_timesteps


        alphas_cumprod_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
        for x in range(self.original_timesteps):
            alphas_cumprod_valid[self.original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]

        sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
        self.set_sigmas(sigmas)

    def set_sigmas(self, sigmas):
        self.register_buffer('sigmas', sigmas)
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
        return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)

    def sigma(self, timestep):
        t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
        return log_sigma.exp().to(timestep.device)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent * 999.0)).item()


def rescale_zero_terminal_snr_sigmas(sigmas):
    alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= (alphas_bar_sqrt_T)

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return ((1 - alphas_bar) / alphas_bar) ** 0.5

class ModelSamplingDiscrete:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["eps", "v_prediction", "lcm"],),
                              "zsnr": ("BOOLEAN", {"default": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, zsnr):
        m = model.clone()

        sampling_base = ldm_patched.modules.model_sampling.ModelSamplingDiscrete
        if sampling == "eps":
            sampling_type = ldm_patched.modules.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
        elif sampling == "lcm":
            sampling_type = LCM
            sampling_base = ModelSamplingDiscreteDistilled

        class ModelSamplingAdvanced(sampling_base, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced()
        if zsnr:
            model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))

        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class ModelSamplingContinuousEDM:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["v_prediction", "eps"],),
                              "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, sigma_max, sigma_min):
        m = model.clone()

        if sampling == "eps":
            sampling_type = ldm_patched.modules.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION

        class ModelSamplingAdvanced(ldm_patched.modules.model_sampling.ModelSamplingContinuousEDM, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced()
        model_sampling.set_sigma_range(sigma_min, sigma_max)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class RescaleCFG:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, multiplier):
        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]
            sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
            x_orig = args["input"]

            #rescale cfg has to be done on v-pred model output
            x = x_orig / (sigma * sigma + 1.0)
            cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
            uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)

            #rescalecfg
            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )

NODE_CLASS_MAPPINGS = {
    "ModelSamplingDiscrete": ModelSamplingDiscrete,
    "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
    "RescaleCFG": RescaleCFG,
}