|
|
|
|
|
|
|
__all__ = ['path', 'title', 'description', 'article', 'learn', 'examples', 'interpretation', 'enable_queue', 'labels', |
|
'classify_image'] |
|
|
|
|
|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
path = Path() |
|
path.ls(file_exts='.pkl') |
|
|
|
|
|
|
|
title = "Bear Classifier" |
|
description = "A bear breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." |
|
|
|
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" |
|
|
|
import pathlib |
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
learn = load_learner('export.pkl') |
|
|
|
examples = ['tddd.jpg'] |
|
|
|
interpretation='default' |
|
|
|
enable_queue=True |
|
|
|
labels = learn.dls.vocab |
|
|
|
def classify_image(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
gr.Interface(fn=classify_image,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch(share=True) |
|
|
|
|
|
|
|
|