File size: 1,377 Bytes
5a6d182 ad2170c 5a6d182 fed0a7f 5a6d182 e4c2136 5a6d182 e4c2136 5a6d182 2afe686 2685763 2afe686 5a6d182 2afe686 a69138f 78c869e 2afe686 5a6d182 2afe686 5a6d182 4f86d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Barifier.ipynb.
# %% auto 0
__all__ = ['path', 'title', 'description', 'article', 'learn', 'examples', 'interpretation', 'enable_queue', 'labels',
'classify_image']
# %% ../Barifier.ipynb 1
from fastai.vision.all import *
import gradio as gr
# %% ../Barifier.ipynb 2
path = Path()
path.ls(file_exts='.pkl')
# %% ../Barifier.ipynb 3
title = "Bear Classifier"
description = "A bear breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
import pathlib
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
learn = load_learner('export.pkl')
examples = ['tddd.jpg']
interpretation='default'
enable_queue=True
labels = learn.dls.vocab
def classify_image(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
gr.Interface(fn=classify_image,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch(share=True)
# %%
|