# AUTOGENERATED! DO NOT EDIT! File to edit: ../Barifier.ipynb. # %% auto 0 __all__ = ['path', 'title', 'description', 'article', 'learn', 'examples', 'interpretation', 'enable_queue', 'labels', 'classify_image'] # %% ../Barifier.ipynb 1 from fastai.vision.all import * import gradio as gr # %% ../Barifier.ipynb 2 path = Path() path.ls(file_exts='.pkl') # %% ../Barifier.ipynb 3 title = "Bear Classifier" description = "A bear breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article="

Blog post

" import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('export.pkl') examples = ['tddd.jpg'] interpretation='default' enable_queue=True labels = learn.dls.vocab def classify_image(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=classify_image,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch(share=True) # %%