File size: 10,069 Bytes
9c7b739
8c8fd10
 
 
 
 
 
 
 
 
 
 
 
9c7b739
8c8fd10
b3fb6d0
 
 
 
 
 
acb7c67
6fdead5
42e3312
8c8fd10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7b739
 
 
8c8fd10
acb7c67
9c7b739
613948b
42e3312
9c7b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb7c67
42e3312
9c7b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c8fd10
8076a34
2364fd8
8c8fd10
 
42e3312
8c8fd10
 
42e3312
8c8fd10
9c7b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c8fd10
9c7b739
 
 
 
 
 
 
 
8c8fd10
 
 
 
 
 
 
 
 
 
 
 
 
9c7b739
8c8fd10
 
 
 
 
 
 
 
 
2364fd8
0e0ffa8
 
 
b3fb6d0
8c8fd10
2048cd4
9c7b739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM

import yfinance as yf
from statsmodels.tsa.seasonal import seasonal_decompose

on_load="""
async()=>{
    console.log("HELLO");
}
"""

def get_ans():
  plt.close()
  inp = "NVDA"
  tickers = yf.Tickers(inp)
  x = tickers.tickers[inp].history(period="15y")
  df = x
  df.reset_index(inplace=True)
  df1 = df.reset_index()['Close']
  df['Date'] = pd.to_datetime(df['Date'])
  scaler = MinMaxScaler(feature_range=(0, 1))
  df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))
  training_size = int(len(df1) * 0.65)
  test_size = len(df1) - training_size
  train_data, test_data = df1[0:training_size, :], df1[training_size:len(df1), :1]
  def create_dataset(dataset, time_step=1):
      dataX, dataY = [], []
      for i in range(len(dataset) - time_step - 1):
          a = dataset[i:(i + time_step), 0]
          dataX.append(a)
          dataY.append(dataset[i + time_step, 0])
      return np.array(dataX), np.array(dataY)
  time_step = 100
  X_train, y_train = create_dataset(train_data, time_step)
  X_test, ytest = create_dataset(test_data, time_step)

  X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
  X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
  model = Sequential()
  model.add(LSTM(50, return_sequences=True, input_shape=(100, 1)))
  model.add(LSTM(50, return_sequences=True))
  model.add(LSTM(50))
  model.add(Dense(1))
  model.compile(loss='mean_squared_error', optimizer='adam')
  model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=2,batch_size=64,verbose=1)
  train_predict=model.predict(X_train)
  test_predict=model.predict(X_test)
  train_predict=scaler.inverse_transform(train_predict)
  test_predict=scaler.inverse_transform(test_predict)
  look_back=100
  trainPredictPlot = np.empty_like(df1)
  trainPredictPlot[:, :] = np.nan
  trainPredictPlot[look_back:len(train_predict)+look_back, :] = train_predict
  # shift test predictions for plotting
  testPredictPlot = np.empty_like(df1)
  testPredictPlot[:, :] = np.nan
  testPredictPlot[len(train_predict)+(look_back*2)+1:len(df1)-1, :] = test_predict
  # plot baseline and predictions
  plt.plot(scaler.inverse_transform(df1))
  plt.plot(trainPredictPlot)
  plt.plot(testPredictPlot)

  x_input=test_data[341:].reshape(1,-1)
  resize_var = x_input.size
  temp_input=list(x_input)
  temp_input=temp_input[0].tolist()
  lst_output=[]
  n_steps=100
  i=0
  while(i<30):

      if(len(temp_input)>100):
          #print(temp_input)
          x_input=np.array(temp_input[1:])
          # print("{} day input {}".format(i,x_input))
          x_input=x_input.reshape(1,-1)
          x_input = x_input.reshape((1, x_input.size, 1))
          #print(x_input)
          yhat = model.predict(x_input, verbose=0)
          # print("{} day output {}".format(i,yhat))
          temp_input.extend(yhat[0].tolist())
          temp_input=temp_input[1:]
          #print(temp_input)
          lst_output.extend(yhat.tolist())
          i=i+1
      else:
          x_input = x_input.reshape((1, n_steps,1))
          yhat = model.predict(x_input, verbose=0)
          # print(yhat[0])
          temp_input.extend(yhat[0].tolist())
          # print(len(temp_input))
          lst_output.extend(yhat.tolist())
          i=i+1

  day_new=np.arange(1,101)
  day_pred=np.arange(101,131)

  df3=df1. tolist()
  df3.extend (lst_output)
  len_lis = len(lst_output)
  df3=pd.DataFrame(df3, columns=['Values'])
  df3['index']=range(1, len(df3) + 1)
  lst_output = pd.DataFrame(lst_output, columns=["Values"])
  lst_output['index']=range(1, len(lst_output) + 1)
  the_max = max(np.asarray(df['Open']))
  df3['Values'] = [i * the_max for i in df3['Values']]
  return plt, gr.update(visible=True,value=df, x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-300:], x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-30:], x="Date",y="Open", height=500, width=800), max(np.asarray(df['Open'])), min(np.asarray(df['Open'])), max(np.asarray(df['Open'])[-300:]), min(np.asarray(df['Open'][-300:])), max(np.asarray(df['Open'])[-30:]), min(np.asarray(df['Open'][-30:])), (max(np.asarray(df['Open']))) * (lst_output["Values"][0]), gr.update(visible=True,value=lst_output, x="index",y="Values", height=500, width=800),  gr.update(visible=True,value=df3, x="index",y="Values", height=500, width=800),  gr.update(visible=True,value=df3[-300:], x="index",y="Values", height=500, width=800)

def get_seo():
  plt.close()
  time_step = 100
  inp = "NVDA"
  tickers = yf.Tickers(inp)
  x = tickers.tickers[inp].history(period="15y")
  df = x
  df.reset_index(inplace=True)
  df1 = df.reset_index()['Close']
  df['Date'] = pd.to_datetime(df['Date'])
  scaler = MinMaxScaler(feature_range=(0, 1))
  df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))
  def create_dataset(dataset, time_step=1):
      dataX, dataY = [], []
      for i in range(len(dataset) - time_step - 1):
          a = dataset[i:(i + time_step), 0]
          dataX.append(a)
          dataY.append(dataset[i + time_step, 0])
      return np.array(dataX), np.array(dataY)
  X_train, y_train = create_dataset(df1, time_step)
  decompose_result_mult = seasonal_decompose(X_train, model="additive", period=time_step)
  trend = decompose_result_mult.trend
  seasonal = decompose_result_mult.seasonal
  residual = decompose_result_mult.resid

  z = [i[0] for i in trend]
  z = pd.DataFrame(z, columns=['Values'])
  z['index'] = range(1, len(z) + 1)

  y = [i[0] for i in seasonal]
  y = pd.DataFrame(y, columns=['Values'])
  y['index'] = range(1, len(z) + 1)

  a = [i[0] for i in residual]
  a = pd.DataFrame(a, columns=['Values'])
  a['index'] = range(1, len(a) + 1)

  return gr.update(visible=True, value=z, x='index', y='Values', height=500, width=800), gr.update(visible=True, value=y[:100], x='index', y='Values', height=500, width=800), gr.update(visible=True, value=a, x='index', y='Values', height=500, width=800)

def get_info():
  inp = "NVDA"
  tickers = yf.Ticker(inp)
  info = tickers.info
  balance = tickers.balance_sheet

  long_info= info['longBusinessSummary']
  curr_rat = info['currentRatio']
  quick_rat = info['quickRatio']
  short_rat = info['shortRatio']
  debt_eq = info['debtToEquity']
  volume = info['volume']
  market_cap = info['marketCap']
  curr_price = info['currentPrice']
  rev_per = info['revenuePerShare']

  return long_info, curr_rat, quick_rat, short_rat, debt_eq, volume, market_cap, curr_price, rev_per

with gr.Blocks() as demo:
    
  with gr.Row().style(equal_height=True):
    with gr.Column():
      gr.Markdown("<center><h1>Stock Analysis NVDA<h1></center>")
  with gr.Row():
    with gr.Column():
      Name_of_the_company = "NVDA"
      gr.Markdown("<center><h2>Analysis<h2></center>")
      gr.Markdown("<center><h3>Inportant Information</h3></center>")
      info1 = gr.Textbox()
      gr.Markdown("<h4>Insightful Ratios</h4>")
      with gr.Row():
        ratio1 = gr.Textbox(label='Current Ratio')
        ratio2 = gr.Textbox(label='Quick Ratio')
        ratio3 = gr.Textbox(label='Short Ratio')
        ratio4 = gr.Textbox(label='Debt to Equity Ratio')

      gr.Markdown("<center><h3>General Information</h3></center>")
      with gr.Row():
        curr_price = gr.Textbox(label='Current Price of Stock')
        rev_per = gr.Textbox(label='Revenue per Share')
      vol = gr.Textbox(label='Volume')
      mar_cap = gr.Textbox(label='Market Cap')

      gr.Markdown("<h3>Regression Trends of Price<h3>")
      with gr.Tab("Overall Trend"):
        trend_g = gr.LinePlot(visible=False, label='Trend of stock over its lifetime', height=1000, width=1000)
      with gr.Tab("Seasonal Trends"):
        Seaso = gr.LinePlot(visible=False,label="This is for one season", height=1000, width=1000)
      with gr.Tab("Residual Variation"):
        resid = gr.LinePlot(visible=False, label="Residual Variation over time", height=1000, width=1000)


      mp = gr.Plot()
      gr.Markdown("<h3>Price over time<h3>")
      with gr.Tab("All Time"):
        mp1 = gr.LinePlot(visible=False, label="All time", height=1000, width=1000)
        with gr.Row():
          Max_all = gr.Textbox(placeholder="The Maximum price the stock has ever reached", label='Maximum of all time')
          Min_all = gr.Textbox(placeholder="The Minimum price the stock has ever reached", label="Minimum of all time")
      with gr.Tab("Past year"):
        mp2 = gr.LinePlot(visible=False, label="Last year")
        with gr.Row():
          Max_year = gr.Textbox(placeholder="The Maximum price for the last year", label='Maximum')
          Min_year = gr.Textbox(placeholder="The Minimum price for the last year", label="Minimum")
      with gr.Tab("Past few Days"):

        mp3 = gr.LinePlot(visible=False, label="Past few Days")
        with gr.Row():
          Max_rec = gr.Textbox(placeholder="The Maximum price for the last few days", label='Recent Maximum')
          Min_rec = gr.Textbox(placeholder="The Minimum price for the last few days", label="Recent Minimum")
      gr.Markdown("<center><h2>Predictive Analysis</h2></center>")
      Next_day = gr.Textbox(placeholder="Predicted price for tomorrow", label="Predicted price for Tomorrow")
      Next_plot = gr.LinePlot(visible=False)
      Next_plot_all = gr.LinePlot(visible=False)
      Next_plot_year = gr.LinePlot(visible=False)
        
      demo.load(get_ans, outputs= [mp,mp1,mp2,mp3, Max_all, Min_all,Max_year, Min_year, Max_rec, Min_rec, Next_day, Next_plot, Next_plot_all, Next_plot_year], _js=on_load)
      demo.load(get_info, outputs=[info1, ratio1, ratio2, ratio3, ratio4, vol, mar_cap, curr_price, rev_per], _js=on_load)
      demo.load(get_seo, outputs=[trend_g, Seaso, resid], _js=on_load)
  

 
demo.launch(inline=False)