Spaces:
Configuration error
Configuration error
File size: 27,081 Bytes
025632f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
import streamlit as st
import pandas as pd
import plotly.express as px
import datetime
from Scheduler.mailer_quant import Mailer
from sqlalchemy import create_engine
import psycopg2
import graphviz as graphviz
import plotly.graph_objects as go
from logs_portal import log
import io
import boto3
from Data.credentials import credentials_s3 as creds3
from Data.credentials import credentials_postgresql as credpost
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode, JsCode
def save_s3(key, secret_key, bucket, df, path):
with io.BytesIO() as output:
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
df.to_excel(writer, index=False)
data = output.getvalue()
s3 = boto3.resource('s3', aws_access_key_id=key,
aws_secret_access_key=secret_key)
s3.Bucket(bucket).put_object(Key=path, Body=data)
def read_excel_s3(key, secret_key, bucket, path):
s3_client = boto3.client('s3', aws_access_key_id=key,
aws_secret_access_key=secret_key)
response = s3_client.get_object(Bucket=bucket, Key=path)
data = response["Body"].read()
df = pd.read_excel(io.BytesIO(data), engine='openpyxl')
return df
def display_table(df: pd.DataFrame):
# Configure AgGrid options
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_selection(selection_mode="single", use_checkbox=True,)
return AgGrid(
df, gridOptions=gb.build(),
update_mode=GridUpdateMode.SELECTION_CHANGED,
enable_enterprise_modules=True)
def style_table():
style_table = """
<style>
tbody tr:hover {
color:#BB1114;}
thead {
background-color:#BB1114 ;
color: #E8E8E8;
}
tbody tr:nth-child(odd) {
background-color: #fff;
}
# tbody tr:nth-child(even) {
# background-color: #eee;
# }
tbody tr:nth-child(odd)
stTable {
border-collapse: collapse;
margin: 25px 0;
font-size: 0.9em;
min-width: 400px;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
}
</style>
"""
st.markdown(style_table, unsafe_allow_html=True)
def mostrar_tabla(info_fil, placeholder, select):
info_fil2 = info_fil.copy()
info_fil2 = info_fil2[select]
placeholder.table(info_fil2)
@st.experimental_memo
def leer_notas():
url = credpost["POSTGRESQL"]
engine = create_engine(url, echo=False)
data = pd.read_sql_query("SELECT * FROM notas_analistas", con=engine)
data.columns = ["Analista", "Comentario", "Date", "Empresa", "ID_Quant",
"LV1", "Nota",
"Pais", "Ticker Bloomberg", "Tipo de Comentario"]
data.index = pd.to_datetime(data['Date']).dt.strftime('%d/%m/%Y')
data.index.name = "Fecha"
data = data.sort_index(ascending=False)
return data
@log
def ver_nota():
select = ["Analista", "Tipo de Comentario", "Empresa", "Pais", "Nota",
"Comentario"]
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path ="Analistas Empresa.xlsx"
style_table()
col1, col2, col3, col4 = st.columns(4)
data = leer_notas()
select = ["Analista", "Pais", "LV1", "Empresa", "Nota",
"Comentario"]
data3 = read_excel_s3(key, secret_key, bucket, path)
data4 = data3.copy()
autores = sorted(list(set(data4["Analista"].dropna())))
Autor = col1.selectbox("Analista", ["-"] + autores)
if Autor != "-":
data4 = data4[data4["Analista"] == Autor]
data = data[data["Analista"] == Autor]
pais = sorted(list(set(data4["Pais"].dropna())))
Pais = col2.selectbox("Pais", ["-"] + pais)
if Pais != "-":
data4 = data4[data4["Pais"] == Pais]
data = data[data["Pais"] == Pais]
industria = sorted(list(set(data4["LV1"].dropna())))
Industria = col3.selectbox("Industria", ["-"] + industria)
if Industria != "-":
data4 = data4[data4["LV1"] == Industria]
data = data[data["LV1"] == Industria]
empresa = sorted(list(set(data4["Empresa"].dropna())))
Empresa = col4.selectbox("Empresa", ["-"] + empresa)
if Empresa != "-":
data4 = data4[data4["Empresa"] == Empresa]
data = data[data["Empresa"] == Empresa]
info_fil = data
Ordenar_por = col1.selectbox("Ordenar por", ["Date", "Analista", "Pais",
"LV1", "Empresa"])
mayor = col2.selectbox("Asc o desc", ["Descendiente",
"Ascendiente"])
fec_i = col3.date_input('Fecha de inicio', datetime.date(2021, 7, 1))
fec_f = col4.date_input('Fecha final')
placeholder = st.empty()
if mayor != "-" and Ordenar_por != "-":
var = Ordenar_por
if mayor == "Ascendiente":
info_fil = info_fil.sort_values(var, ascending=True)
else:
info_fil = info_fil.sort_values(var, ascending=False)
info_fil = info_fil[info_fil["Date"].dt.date >= fec_i]
info_fil = info_fil[info_fil["Date"].dt.date <= fec_f]
mostrar_tabla(info_fil, placeholder, select)
@st.experimental_memo
def read_mapeo_analistas():
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path = "Analistas Empresa.xlsx"
return read_excel_s3(key, secret_key, bucket, path)
@st.experimental_memo
def read_company_db():
company_db = pd.pandas.read_excel("Data/Company_Base_Definitivo.xlsx",
sheet_name="Compilado",
engine="openpyxl")
return company_db
def aggrid_notas(data):
gb = GridOptionsBuilder.from_dataframe(data)
# make columns editable
gb.configure_columns(["Nota",
"Comentario"], editable=True)
gb.configure_column('Nota',
cellEditor='agRichSelectCellEditor',
cellEditorParams={'values': [1, 2, 3, 4, 5]}
)
js = JsCode("""
function(e) {
let api = e.api;
let rowIndex = e.rowIndex;
let col = e.column.colId;
let rowNode = api.getDisplayedRowAtIndex(rowIndex);
api.flashCells({
rowNodes: [rowNode],
columns: [col],
flashDelay: 10000000000
});
};
""")
gb.configure_grid_options(onCellValueChanged=js)
go = gb.build()
return AgGrid(data, gridOptions=go, key='grid1',
allow_unsafe_jscode=True,
reload_data=False,
fit_columns_on_grid_load=False,
enable_enterprise_modules=True)
def ingresar_nota():
try:
notas_df = leer_notas()
companydb_df = read_company_db()
companies_assigned_df = read_mapeo_analistas()
notas_df["Comentario"] = notas_df["Comentario"].fillna(" ")
analista = st.session_state["name"]
empresa_analista = sorted(
list(set(companies_assigned_df[companies_assigned_df["Analista"]
== analista]["Empresa"])))
companies_fil = companies_assigned_df[
companies_assigned_df["Analista"] == analista]
data_fil_a = notas_df[notas_df["Analista"] == analista].drop_duplicates(
"Empresa")
data_fil = data_fil_a[["Empresa", "Nota", "Comentario"]]
data_fil = companies_fil.merge(data_fil,
on="Empresa",
how='left').reset_index()
data_fil["Nota"] = data_fil["Nota"].fillna(0)
data_fil["Comentario"] = data_fil["Comentario"].fillna(" ")
data_fil = data_fil[["Empresa",
"Pais",
"LV1",
"Nota",
"Comentario"]].sort_values("LV1")
notas = aggrid_notas(data_fil)
notas_f = notas["data"]
update_notas = []
for emp in notas_f.Empresa:
new_df = notas_f[notas_f.Empresa == emp]
old_df = data_fil[data_fil.Empresa == emp]
new_nota = new_df.iloc[0].Nota
new_comentario = new_df.iloc[0].Comentario
old_nota = old_df.iloc[0].Nota
old_comentario = old_df.iloc[0].Comentario
if old_nota != new_nota or old_comentario != new_comentario:
update_notas.append(notas_f[notas_f.Empresa == emp])
update_final = pd.concat(update_notas)
st.write(update_final)
submitted_2 = st.button("Update Notas")
if submitted_2:
today = datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S')
for emp in update_final.Empresa:
df_emp = update_final[update_final.Empresa==emp]
empresa_df = companydb_df[companydb_df['Short_Name']==emp].iloc[0]
pais = empresa_df['Portfolio_Country']
industria = empresa_df["LV1"]
id_quant = empresa_df["ID_Quant"]
tbloom = empresa_df['Ticker Bloomberg']
comentario = df_emp.iloc[0]["Comentario"]
nota = df_emp.iloc[0]["Nota"]
var = """(analista, comentario, date_nota, empresa, id_quant, lv1,
nota, pais, ticker_bloomberg)"""
if "'" in emp:
emp = emp.replace("'", "")
varlist = [analista, comentario, today, emp, id_quant,
industria, nota, pais, tbloom]
# try:
url = credpost["POSTGRESQL"]
conn = psycopg2.connect(url, sslmode='require')
cur = conn.cursor()
cur.execute("INSERT INTO notas_test {Var} VALUES %r; ".
format(Var=var) % (tuple(varlist),))
conn.commit()
cur.close()
conn.close()
st.info("Nota ingresada exitosamente")
if emp != "-":
asunto = "Actualizacion nota " + emp + " - " + analista
mensaje = analista + " ha actualizado la nota de la empresa " + emp + " a " + str(nota)
else:
asunto = "Actualizacion nota " + industria + " - " + analista
mensaje = analista + " ha actualizado la nota de la industria " + industria + " a " + str(nota)
destinatario = st.session_state['mail']
mail = Mailer(asunto, mensaje, "", "bullm@larrainvial.com")
mail.send_message([#destinatario,
"bullm@larrainvial.com,",
"benjamin.ull.m@gmail.com"])
# except:
# st.error("Problemas al ingresar la nota")
# asunto = "Actualizacion nota " + emp + " - " + analista
# mensaje = analista + " ha tenido problemas con la nota de" + emp + " a " + str(nota)
# mail = Mailer(asunto, mensaje, "", "bullm@larrainvial.com")
# mail.send_message(["bullm@larrainvial.com,",
# "benjamin.ull.m@gmail.com"])
st.experimental_memo.clear()
except Exception as exc:
st.write(exc)
def ingresar_nota_ex():
Analistas = {
"fsutter": "Florencia Sutter",
"alehmann": "Alejandro Lehmann",
"bcosoi": "Benjamín Cosoi",
"chinojosa": "Carlos Hinojosa",
"gcatalan": "Gustavo Catalan",
"bull": "Benjamin Ul",
"ftaverne": "Francisca Taverne"
}
notas_df = leer_notas()
companydb_df = read_company_db()
companies_assigned_df = read_mapeo_analistas()
notas_df["Comentario"] = notas_df["Comentario"].fillna(" ")
if st.session_state.key in list(Analistas.keys()):
analista = Analistas[st.session_state.key]
data_analista = companies_assigned_df[companies_assigned_df["Analista"] == analista]
industrias_analista = sorted(list(
set(companies_assigned_df[companies_assigned_df["Analista"]
== analista]["LV1"])))
empresa_analista = sorted(list(
set(companies_assigned_df[companies_assigned_df["Analista"]
== analista]["Empresa"])))
else:
analista = st.session_state.key
data_analista = companies_assigned_df[
companies_assigned_df["Analista"] == analista]
industrias_analista = sorted(
list(set(companies_assigned_df[companies_assigned_df["Analista"]
== analista]["LV1"])))
empresa_analista = sorted(
list(set(companies_assigned_df[companies_assigned_df["Analista"]
== analista]["Empresa"])))
Countries = sorted(list(set(data_analista["Pais"])))
LV1s = sorted(list(set(data_analista["LV1"])))
industrias = []
for c in Countries:
for l in LV1s:
industrias.append(c + " - " + l)
col1, col2 = st.columns(2)
placeholder = col2.empty()
companies_fil = companies_assigned_df[
companies_assigned_df["Analista"] == analista]
data_fil_a = notas_df[notas_df["Analista"] == analista].drop_duplicates(
"Empresa")
data_fil = data_fil_a[["Empresa", "Nota"]]
data_fil = companies_fil.merge(data_fil,
on="Empresa",
how='left').fillna(0)
with col1:
notas_df2 = notas_df
porc_total = (notas_df.drop_duplicates("Empresa")["Nota"]>0).sum()/len(notas_df)
porc_emp_notas = (data_fil["Nota"] > 0).sum()/len(data_fil)*100
delta_per = round(porc_total - porc_emp_notas, 2)
st.metric("% de empresas con nota", round(porc_emp_notas,2), delta_per)
notas_table = display_table(data_fil[["Empresa",
"Pais",
"LV1",
"Nota"]].sort_values("LV1"))
if len(notas_table["selected_rows"]) > 0:
emp_name = notas_table["selected_rows"][0]["Empresa"]
st.subheader("Comentario")
data_emp_df = data_fil_a[data_fil_a["Empresa"] == emp_name]
if len(data_emp_df) > 0:
st.write(data_emp_df.iloc[0]["Comentario"])
id_quant = data_emp_df.iloc[0]["ID_Quant"]
country = data_emp_df.iloc[0]["Pais"]
with placeholder.form("my_form2", True):
# col1, col2, col3, col4 = st.columns((3, 8, 2, 1.5))
Empresas = ["-"]+sorted(list(empresa_analista) + industrias)
st.markdown(
'<p style="font-size:12px; padding-left:0px; margin-bottom:0px;">Analista</p>',
unsafe_allow_html=True)
st.markdown('<h3 style="padding-left:0px;; margin-bottom:0px;"">'+analista+"</h3>",
unsafe_allow_html=True)
if len(notas_table["selected_rows"]) <1:
empresa = st.selectbox('Empresa', Empresas)
else:
empresa = notas_table["selected_rows"][0]["Empresa"]
st.subheader(empresa)
tipo_comentario = "Nota"
nota = st.selectbox("Nota", [0, 1, 2, 3, 4, 5])
comentario = st.text_area('Comentario')
submitted_2 = st.form_submit_button("Publicar ")
var = """(analista, comentario, date_nota, empresa, id_quant, lv1,
nota, pais, ticker_bloomberg)"""
today = datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S')
if submitted_2:
st.experimental_memo.clear()
empresa_df = companydb_df[companydb_df['Short_Name']==empresa].iloc[0]
pais = empresa_df['Portfolio_Country']
industria = empresa_df["LV1"]
id_quant = empresa_df["ID_Quant"]
tbloom = empresa_df['Ticker Bloomberg']
if "'" in empresa:
empresa = empresa.replace("'", "")
varlist = [analista, comentario, today, empresa, id_quant,
industria, nota, pais, tbloom]
try:
url = credpost["POSTGRESQL"]
conn = psycopg2.connect(url, sslmode='require')
cur = conn.cursor()
cur.execute("INSERT INTO notas_analistas {Var} VALUES %r; ".
format(Var=var) % (tuple(varlist),))
conn.commit()
cur.close()
conn.close()
st.info("Nota ingresada exitosamente")
if empresa != "-":
asunto = "Actualizacion nota " + empresa + " - " + analista
mensaje = analista + " ha actualizado la nota de la empresa " + empresa + " a " + str(nota)
else:
asunto = "Actualizacion nota " + industria + " - " + analista
mensaje = analista + " ha actualizado la nota de la industria " + industria + " a " + str(nota)
destinatario = st.session_state['mail']
mail = Mailer(asunto, mensaje, "", "bullm@larrainvial.com")
mail.send_message([destinatario,
"bullm@larrainvial.com,",
"benjamin.ull.m@gmail.com"])
except:
st.error("Problemas al ingresar la nota")
asunto = "Actualizacion nota " + empresa + " - " + analista
mensaje = analista + " ha tenido problemas con la nota de" + empresa + " a " + str(nota)
mail = Mailer(asunto, mensaje, "", "bullm@larrainvial.com")
mail.send_message(["bullm@larrainvial.com,",
"benjamin.ull.m@gmail.com"])
notas_df = leer_notas()
# st.write(data_fil.columns)
# st.table(data_fil[["Analista","Empresa", "LV1","Nota", "Comentario"]])
@log
def estadisticas():
data = leer_notas()
st.subheader("Distribución de notas")
data = data[data["Nota"] != 0]
col1, col2 = st.columns((1.681, 1))
place = col1.empty()
val = col2.selectbox("Seleccione un analista", list(set(data["Analista"].dropna())))
data_fil = data[data["Analista"] == val]
data_fil["count"] = 1
data_fil2 = data_fil.groupby(by=["Nota"],
as_index=False).agg({"count": "sum"})
data_fil3 = data.sort_values("Date", ascending=False)
data_fil3 = data_fil3[data_fil3["ID_Quant"] == 0]
data_fil4 = data_fil3.groupby(by=["LV1", "Pais", "Empresa", "Date"],
as_index=False).agg({"Nota": "mean"})
data_fil3 = data_fil3.groupby(by=["LV1"],
as_index=False).agg({"Nota": "mean"})
l = []
for i in range(len(data_fil2)):
l.append(str(round(data_fil2.iloc[i]["Nota"])))
data_fil2["Nota "] = l
fig = px.bar(data_fil2, x="Nota ", y="count",
color_discrete_sequence=['indianred'])
fig.update_layout(bargap=0.2)
place.plotly_chart(fig, use_container_width=True)
col2.header("Media = " + str(round(sum(data_fil2["Nota"]*data_fil2["count"])/sum(data_fil2["count"]),1)))
data["Datetime"] = pd.to_datetime(data["Date"], format='%Y-%m-%d %H:%M:%S',
errors='ignore')
data_fil4["Datetime"] = pd.to_datetime(data_fil4["Date"],
format='%Y-%m-%d %H:%M:%S',
errors='ignore')
st.subheader("Evolución por empresa")
col1, col2 = st.columns((2, 1))
placeholder = col1.empty()
pais = col2.selectbox("Seleccione un pais",
["-"] + sorted(list(set(data["Pais"].dropna()))))
if pais != "-":
data2 = data[data["Pais"] == pais]
else:
data2 = data
industria = col2.selectbox("Seleccione una industria",
["-"] + sorted(list(set(data2["LV1"].dropna()))))
if industria != "-":
data2 = data2[data2["LV1"] == industria]
else:
data2=data2
empr = col2.selectbox("Seleccione una empresa",
["-"] + sorted(list(set(data2["Empresa"].dropna()))))
if empr != "-":
notas_empr = data[data["Empresa"] == empr]
elif empr == "-" and pais == "-" and industria != "-":
notas_empr = data_fil4[data_fil4["LV1"]==industria]
elif empr == "-" and pais != "-" and industria == "-":
notas_empr = data_fil4[data_fil4["Pais"]==pais]
else:
notas_empr = data2
date_range = pd.date_range(notas_empr['Datetime'].min() - datetime.timedelta(days=4),
datetime.datetime.today() + datetime.timedelta(days=1))
hist_notas = pd.DataFrame(index=date_range)
if empr == "-" and pais == "-" and industria == "-":
placeholder.empty()
else:
for empresa in list(set(notas_empr["Empresa"])):
l = []
a = 0
for i in list(date_range):
data3 = notas_empr[notas_empr["Empresa"] == empresa]
data3 = data3[data3["Datetime"].dt.date == i]
if len(data3) == 0:
l.append(a)
else:
a = data3.iloc[0]["Nota"]
l.append(a)
hist_notas[empresa] = l
hist_notas["Date"] = list(hist_notas.index)
fig2 = px.line(hist_notas, x="Date", y=hist_notas.columns)
fig2.update_traces(textposition="bottom right")
placeholder.plotly_chart(fig2, use_container_width=True)
col2.header(" ")
col2.header(" ")
col1, col2 = st.columns((2, 1))
col1.subheader("Promedio por industria")
add_pais = col2.selectbox("Añadir Pais", ["-"] + list(set(data_fil4["Pais"])))
if add_pais != "-":
data_fil4 = data_fil4[data_fil4["Pais"] == add_pais]
data_fil4 = data_fil4.sort_values(by = "Datetime", ascending = False)
data_fil4 = data_fil4.drop_duplicates("LV1")
fig3 = go.Figure(data=[
go.Bar(name='General', x=data_fil3["LV1"], y=data_fil3["Nota"]),
go.Bar(name=add_pais, x=data_fil4["LV1"], y=data_fil4["Nota"])
])
fig3.update_yaxes(range=[min(min(data_fil3['Nota']),
min(data_fil4['Nota']))/1.1,
max(max(data_fil3['Nota']),
max(data_fil4['Nota']))*1.1])
else:
fig3 = go.Figure(data=[
go.Bar(name='General', x=data_fil3["LV1"], y=data_fil3["Nota"])
])
fig3.update_yaxes(range=[min(data_fil3['Nota'])/1.1,
max(data_fil3['Nota'])*1.1])
data_fil3 = data_fil3.sort_values("Nota")
fig3.update_layout(barmode='group',
xaxis={'categoryorder': 'total descending'})
st.plotly_chart(fig3, use_container_width=True)
def asignar_analista():
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path ="Analistas Empresa.xlsx"
analista_emp = read_excel_s3(key, secret_key, bucket, path)
# analista_emp = pd.read_excel("Data/Analistas Empresa.xlsx", engine='openpyxl')
Analistas = {
"fsutter": "Florencia Sutter",
"alehmann": "Alejandro Lehmann",
"bcosoi": "Benjamín Cosoi",
"chinojosa": "Carlos Hinojosa",
"gcatalan": "Gustavo Catalan",
"bull": "Benjamin Ull",
"ftaverne": "Francisca Taverne"
}
analista_emp2 = analista_emp[["ID_Quant", "Analista", "Empresa", "LV1",
"Pais"]]
credenciales = pd.read_csv("Data/Credenciales_h.csv",
names=['Usuario', 'Password', 'Area',
'Cargo','Mail','Nombre'])
analistas = credenciales[credenciales["Cargo"] == "Investment Analyst"]
col1, col2, col3 = st.columns(3)
analista = col1.selectbox("Analista",
sorted(list(set(Analistas.values()))))
industria = col2.selectbox("Industria",
sorted(list(set(analista_emp["LV1"]))))
col3.title(" ")
val = col3.checkbox("Seleccionar todos", value=True)
dicc ={}
with st.form("form"):
col1, col2 = st.columns(2)
col1.write("Asignar a: ")
col2.write("Industria: ")
col1.subheader(analista)
col2.subheader(industria)
col1.header(" ")
col2.header(" ")
col1, col2 = st.columns(2)
empresas = analista_emp[analista_emp["LV1"]==industria]["Empresa"]
i = 0
for empresa in empresas:
if i%2 == 0:
dicc[empresa] = col1.checkbox(empresa, value=val)
i += 1
else:
dicc[empresa] = col2.checkbox(empresa, value=val)
i += 1
submit = st.form_submit_button("Asignar")
if submit:
for empresa in dicc.keys():
if dicc[empresa]:
cambio = analista_emp2[analista_emp2["Empresa"] == empresa]
analista_emp2.loc[analista_emp2.Empresa == empresa, 'Analista'] = analista
save_s3(key, secret_key, bucket, analista_emp2, path)
style_table()
data_f = analista_emp2[["Analista", "Pais", "LV1", "Empresa"]]
data_f = data_f[data_f["Analista"] == analista]
graph = graphviz.Digraph()
for industry in list(set(data_f["LV1"])):
graph.edge(analista, industry)
d_ind = data_f[data_f["LV1"]==industry]
st.subheader("Mapeo Analista - Industrias")
st.graphviz_chart(graph)
d_ind = analista_emp2[["Analista", "Pais", "LV1", "Empresa"]]
d_ind = d_ind[d_ind["LV1"] == industria]
st.subheader("Analistas asignados a la industria " + industria)
st.table(d_ind)
def save_password():
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path ='Claves.xlsx'
claves = read_excel_s3(key, secret_key, bucket, path)
col1, col2 = st.columns((1, 1.5))
with col1.form('Nueva clave'):
new_user = st.text_input("Ingresar usuario")
password = st.text_input("Ingresar clave")
plataforma = st.text_input("Plataforma")
submitted = st.form_submit_button('Ingresar')
if submitted:
claves = claves.append({"Clave": password,
"Usuario": new_user,
"Plataforma": plataforma
}, ignore_index=True)
save_s3(key, secret_key, bucket, claves, path)
style_table()
claves.index = claves['Plataforma']
col2.table(claves[['Usuario','Clave']])
|