File size: 24,337 Bytes
5e8be73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
"""
Gradio web UI wrapper for the Image Postprocess pipeline.
This lightweight wrapper saves the uploaded image to a temporary file,
constructs a minimal args namespace expected by `process_image`, runs the
processing pipeline, and returns the result to the browser.
Designed for quick deployment on Huggingface Spaces.
"""
from pathlib import Path
import tempfile
import os
from types import SimpleNamespace
from typing import Optional
from PIL import Image
import io
import matplotlib.pyplot as plt
import numpy as np
import json
# Preset persistence file (in repo root)
PRESETS_FILE = Path(__file__).parent / "presets.json"
# Builtin presets
BUILTIN_PRESETS = {
"Default": {},
"NovaNodes (reference)": {
"noise_std": 0.02,
"clahe_clip": 2.0,
"tile": 8,
"cutoff": 0.25,
"fstrength": 0.9,
"randomness": 0.05,
# align perturb with NovaNodes default
"perturb": 0.01,
"phase_perturb": 0.08,
"radial_smooth": 5,
"jpeg_cycles": 1,
"jpeg_qmin": 88,
# camera simulation enabled by default for 'reference'
"sim_camera": True,
"vignette_strength": 0.35,
"chroma_strength": 1.2,
"iso_scale": 1.0,
"read_noise": 2.0,
# align hot pixel probability with NovaNodes default
"hot_pixel_prob": 1e-7,
"no_no_bayer": False,
# align LUT strength to node default (1.0)
"lut_strength": 1.0,
},
"High JPEG cycles": {"jpeg_cycles": 3, "jpeg_qmin": 70},
"Aggressive": {"noise_std": 0.06, "fstrength": 1.0, "perturb": 0.02, "jpeg_cycles": 2},
"Subtle": {"noise_std": 0.01, "fstrength": 0.6},
# Conservative preview preset (closer to input image): disables camera simulation
"Preview (no camera sim)": {"sim_camera": False, "noise_std": 0.01, "fstrength": 0.6},
}
def load_custom_presets():
if PRESETS_FILE.exists():
try:
return json.loads(PRESETS_FILE.read_text())
except Exception:
return {}
return {}
def save_custom_preset(name: str, data: dict):
presets = load_custom_presets()
presets[name] = data
PRESETS_FILE.write_text(json.dumps(presets, indent=2))
def get_preset_overrides(name: str):
if name in BUILTIN_PRESETS:
return BUILTIN_PRESETS[name].copy()
customs = load_custom_presets()
return customs.get(name, {}).copy()
def preset_summary(name: str):
overrides = get_preset_overrides(name)
if not overrides:
return "(no overrides)"
return json.dumps(overrides, indent=2)
gr = None
try:
from image_postprocess import process_image
except Exception as e:
process_image = None
IMPORT_ERROR = str(e)
else:
IMPORT_ERROR = None
def _mk_temp_file(suffix: str = ".png") -> str:
f = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
f.close()
return f.name
def run_process(
img: Image.Image,
noise_std: float = 0.02,
clahe_clip: float = 2.0,
tile: int = 8,
cutoff: float = 0.25,
fstrength: float = 0.9,
awb: bool = True,
sim_camera: bool = True,
lut_file: Optional[Path] = None,
lut_strength: float = 0.1,
):
"""Run the repository's processing pipeline on a PIL image and return a PIL image.
Returns (pil.Image or None, status string).
"""
if process_image is None:
return None, f"Backend import error: {IMPORT_ERROR}"
tmp_files = []
try:
in_path = _mk_temp_file(suffix=".png")
img.save(in_path)
tmp_files.append(in_path)
out_path = _mk_temp_file(suffix=".jpg")
tmp_files.append(out_path)
lut_path = None
if lut_file is not None:
# gr.File gives a pathlib.Path-like object; accept either str or Path
lut_path = str(lut_file)
args = SimpleNamespace(
input=in_path,
output=out_path,
awb=bool(awb),
ref=None,
noise_std=float(noise_std),
clahe_clip=float(clahe_clip),
tile=int(tile),
cutoff=float(cutoff),
fstrength=float(fstrength),
randomness=0.05,
perturb=0.008,
seed=None,
fft_ref=None,
fft_mode="auto",
fft_alpha=1.0,
phase_perturb=0.08,
radial_smooth=5,
sim_camera=bool(sim_camera),
no_no_bayer=False,
jpeg_cycles=1,
jpeg_qmin=88,
jpeg_qmax=96,
vignette_strength=0.35,
chroma_strength=1.2,
iso_scale=1.0,
read_noise=2.0,
hot_pixel_prob=1e-6,
banding_strength=0.0,
motion_blur_kernel=1,
lut=(lut_path if lut_path else None),
lut_strength=float(lut_strength),
)
# Debug: print args passed to process_image for tracing
try:
print("process_image called with args:")
for k, v in vars(args).items():
print(f" {k}: {v}")
except Exception:
pass
try:
process_image(in_path, out_path, args)
except Exception as e:
return None, f"Processing error: {e}"
out_img = Image.open(out_path).convert("RGB")
return out_img, "OK"
finally:
for p in tmp_files:
try:
os.unlink(p)
except Exception:
pass
def run_process_with_exif(
img: Image.Image,
noise_std: float = 0.02,
clahe_clip: float = 2.0,
tile: int = 8,
cutoff: float = 0.25,
fstrength: float = 0.9,
awb: bool = True,
sim_camera: bool = True,
lut_file: Optional[Path] = None,
lut_strength: float = 0.1,
awb_ref: Optional[Image.Image] = None,
fft_ref: Optional[Image.Image] = None,
seed: Optional[int] = None,
jpeg_cycles: int = 1,
jpeg_qmin: int = 88,
jpeg_qmax: int = 96,
vignette_strength: float = 0.35,
chroma_strength: float = 1.2,
iso_scale: float = 1.0,
read_noise: float = 2.0,
no_no_bayer: bool = False,
randomness: float = 0.05,
perturb: float = 0.008,
phase_perturb: float = 0.08,
radial_smooth: int = 5,
fft_mode: str = "auto",
fft_alpha: float = 1.0,
apply_exif: bool = True,
hot_pixel_prob: float = 1e-6,
banding_strength: float = 0.0,
motion_blur_kernel: int = 1,
):
"""Run pipeline like `run_process` but return (pil_img, status, exif_hex_or_empty).
This function is used by the Gradio UI to expose EXIF metadata.
"""
if process_image is None:
return None, f"Backend import error: {IMPORT_ERROR}", ""
tmp_files = []
try:
in_path = _mk_temp_file(suffix=".png")
img.save(in_path)
tmp_files.append(in_path)
# optional refs
awb_ref_path = None
if awb_ref is not None:
p = _mk_temp_file(suffix=".png")
awb_ref.save(p)
awb_ref_path = p
tmp_files.append(p)
fft_ref_path = None
if fft_ref is not None:
p = _mk_temp_file(suffix=".png")
fft_ref.save(p)
fft_ref_path = p
tmp_files.append(p)
out_path = _mk_temp_file(suffix=".jpg")
tmp_files.append(out_path)
lut_path = None
if lut_file is not None:
lut_path = str(lut_file)
args = SimpleNamespace(
input=in_path,
output=out_path,
awb=bool(awb),
ref=awb_ref_path,
noise_std=float(noise_std),
clahe_clip=float(clahe_clip),
tile=int(tile),
cutoff=float(cutoff),
fstrength=float(fstrength),
randomness=float(randomness),
perturb=float(perturb),
seed=seed,
fft_ref=fft_ref_path,
fft_mode=fft_mode,
fft_alpha=float(fft_alpha),
phase_perturb=float(phase_perturb),
radial_smooth=int(radial_smooth),
sim_camera=bool(sim_camera),
no_no_bayer=bool(no_no_bayer),
jpeg_cycles=int(jpeg_cycles),
jpeg_qmin=int(jpeg_qmin),
jpeg_qmax=int(jpeg_qmax),
vignette_strength=float(vignette_strength),
chroma_strength=float(chroma_strength),
iso_scale=float(iso_scale),
read_noise=float(read_noise),
hot_pixel_prob=float(hot_pixel_prob),
banding_strength=float(banding_strength),
motion_blur_kernel=int(motion_blur_kernel),
lut=(lut_path if lut_path else None),
lut_strength=float(lut_strength),
)
# Debug: print args passed to process_image for tracing
try:
print("process_image called with args:")
for k, v in vars(args).items():
print(f" {k}: {v}")
except Exception:
pass
try:
process_image(in_path, out_path, args)
except Exception as e:
return None, f"Processing error: {e}", ""
out_img = Image.open(out_path).convert("RGB")
# try to extract EXIF bytes
exif_hex = ""
try:
info = Image.open(out_path).info
exif_bytes = info.get('exif')
if exif_bytes:
exif_hex = exif_bytes.hex()
except Exception:
exif_hex = ""
return out_img, "OK", exif_hex
finally:
for p in tmp_files:
try:
os.unlink(p)
except Exception:
pass
# ------------------ Headless analysis helpers (from AnalysisPanel) ------------------
def pil_to_gray_array(pil_img: Image.Image):
arr = np.array(pil_img.convert('RGB'))
gray = (0.299 * arr[:, :, 0] + 0.587 * arr[:, :, 1] + 0.114 * arr[:, :, 2]).astype(np.float32)
return gray
def compute_fft_magnitude(gray_arr, eps=1e-8):
f = np.fft.fft2(gray_arr)
fshift = np.fft.fftshift(f)
mag = np.abs(fshift)
mag_log = np.log1p(mag)
return mag, mag_log
def radial_profile(mag, center=None, nbins=100):
h, w = mag.shape
if center is None:
center = (int(h / 2), int(w / 2))
y, x = np.indices((h, w))
r = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
r_flat = r.ravel()
mag_flat = mag.ravel()
max_r = np.max(r_flat)
if max_r <= 0:
return np.linspace(0, 1, nbins), np.zeros(nbins)
bins = np.linspace(0, max_r, nbins + 1)
inds = np.digitize(r_flat, bins) - 1
radial_mean = np.zeros(nbins)
for i in range(nbins):
sel = inds == i
if np.any(sel):
radial_mean[i] = mag_flat[sel].mean()
else:
radial_mean[i] = 0.0
centers = 0.5 * (bins[:-1] + bins[1:]) / max_r
return centers, radial_mean
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
plt.close(fig)
buf.seek(0)
return Image.open(buf).convert('RGB')
def make_analysis_images(pil_img: Image.Image):
"""Return (hist_img, fft_img, radial_img) as PIL Images for the provided PIL image."""
gray = pil_to_gray_array(pil_img)
# Histogram
fig1 = plt.figure(figsize=(3, 2), dpi=100)
ax1 = fig1.add_subplot(111)
flat = gray.ravel()
if flat.dtype.kind == 'f' and flat.max() <= 1.0:
flat = (flat * 255.0).astype(np.uint8)
ax1.hist(flat, bins=256, range=(0, 255))
ax1.set_title('Grayscale histogram')
ax1.set_xlabel('Intensity')
ax1.set_ylabel('Count')
hist_img = fig_to_pil(fig1)
# FFT magnitude (log)
mag, mag_log = compute_fft_magnitude(gray)
fig2 = plt.figure(figsize=(3, 2), dpi=100)
ax2 = fig2.add_subplot(111)
ax2.imshow(mag_log, origin='lower', aspect='auto')
ax2.set_title('FFT magnitude (log)')
ax2.set_xticks([])
ax2.set_yticks([])
fft_img = fig_to_pil(fig2)
# Radial profile
centers, radial = radial_profile(mag)
fig3 = plt.figure(figsize=(3, 2), dpi=100)
ax3 = fig3.add_subplot(111)
ax3.plot(centers, radial)
ax3.set_title('Radial freq profile')
ax3.set_xlabel('Normalized radius')
ax3.set_ylabel('Mean magnitude')
radial_img = fig_to_pil(fig3)
return hist_img, fft_img, radial_img
def make_delta_image(orig: Image.Image, proc: Image.Image, max_size: int = 256):
"""Return (diff_pil, mse, norm_diff) comparing orig vs proc.
- diff_pil: absolute-difference thumbnail (RGB)
- mse: mean squared error (float)
- norm_diff: mean absolute difference normalized to [0..1]
"""
try:
# Downscale to reasonable size for cheap diffing
orig_small = orig.copy()
proc_small = proc.copy()
orig_small.thumbnail((max_size, max_size))
proc_small.thumbnail((max_size, max_size))
a = np.asarray(orig_small).astype(np.float32)
b = np.asarray(proc_small).astype(np.float32)
# Ensure same shape
if a.shape != b.shape:
# try to convert proc to orig shape via resize
proc_small = proc_small.resize(orig_small.size)
b = np.asarray(proc_small).astype(np.float32)
diff = np.abs(a - b)
mse = float(((a - b) ** 2).mean())
norm_diff = float(diff.mean() / 255.0)
# Scale diff for visibility
diff_vis = np.clip(diff * 4.0, 0, 255).astype(np.uint8)
diff_img = Image.fromarray(diff_vis)
metrics = f"MSE: {mse:.2f}\nMean abs diff (norm): {norm_diff:.4f}"
return diff_img, mse, metrics
except Exception as e:
return None, 0.0, f"delta error: {e}"
def build_interface():
try:
import gradio as gr
except Exception:
raise RuntimeError("Gradio is not installed. Add 'gradio' to requirements.txt and install it.")
with gr.Blocks() as demo:
gr.Markdown("# Image Postprocess β Gradio frontend\nWraps the repository's `process_image` pipeline.")
with gr.Row():
inp = gr.Image(type="pil", label="Input image")
out = gr.Image(type="pil", label="Processed image")
# Preset selector + save/load
customs = list(load_custom_presets().keys())
preset_choices = [*BUILTIN_PRESETS.keys(), *customs]
with gr.Row():
preset = gr.Dropdown(choices=preset_choices, value="Preview (no camera sim)", label="Preset")
preset_name = gr.Textbox(label="Save preset as (name)")
save_preset_btn = gr.Button("Save preset")
preset_summary_box = gr.Textbox(value=preset_summary("Default"), label="Preset summary", interactive=False)
with gr.Row():
hist_out = gr.Image(type="pil", label="Processed hist")
fft_out = gr.Image(type="pil", label="Processed FFT")
radial_out = gr.Image(type="pil", label="Processed radial")
delta_out = gr.Image(type="pil", label="Diff (abs) thumb")
delta_metrics = gr.Textbox(label="Delta metrics", interactive=False)
# Reference images and EXIF output
with gr.Row():
awb_ref = gr.Image(type="pil", label="AWB reference (optional)")
fft_ref = gr.Image(type="pil", label="FFT reference (optional)")
exif_out = gr.Textbox(label="EXIF (hex)")
with gr.Row():
noise_std = gr.Slider(0.0, 0.1, value=0.02, step=0.001, label="Noise STD (fraction)")
clahe_clip = gr.Slider(0.5, 10.0, value=2.0, step=0.1, label="CLAHE clip")
tile = gr.Slider(2, 32, value=8, step=1, label="CLAHE tile")
with gr.Row():
cutoff = gr.Slider(0.0, 1.0, value=0.25, step=0.01, label="Fourier cutoff")
fstrength = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Fourier strength")
awb = gr.Checkbox(label="Apply AWB (auto white balance)", value=True)
with gr.Row():
sim_camera = gr.Checkbox(label="Simulate camera pipeline", value=False)
lut_file = gr.File(label="Optional LUT (png/npy/cube)")
lut_strength = gr.Slider(0.0, 1.0, value=0.1, step=0.01, label="LUT strength")
with gr.Row():
seed = gr.Number(value=None, label="Seed (integer, optional)")
jpeg_cycles = gr.Slider(1, 5, value=1, step=1, label="JPEG cycles")
jpeg_qmin = gr.Slider(30, 100, value=88, step=1, label="JPEG quality (min)")
with gr.Row():
vignette_strength = gr.Slider(0.0, 1.0, value=0.35, step=0.01, label="Vignette strength")
chroma_strength = gr.Slider(0.0, 5.0, value=1.2, step=0.1, label="Chroma strength")
iso_scale = gr.Slider(0.1, 16.0, value=1.0, step=0.1, label="ISO scale")
with gr.Row():
read_noise = gr.Slider(0.0, 50.0, value=2.0, step=0.1, label="Read noise")
no_no_bayer = gr.Checkbox(label="Disable Bayer (no demosaic)", value=False)
# Advanced panel for expert parameters
with gr.Accordion("Advanced parameters (expert)", open=False):
randomness = gr.Slider(0.0, 0.5, value=0.05, step=0.001, label="Fourier randomness")
perturb = gr.Slider(0.0, 0.05, value=0.008, step=0.001, label="Perturb magnitude")
phase_perturb = gr.Slider(0.0, 0.5, value=0.08, step=0.001, label="Phase perturb")
radial_smooth = gr.Slider(0, 50, value=5, step=1, label="Radial smooth")
fft_mode = gr.Dropdown(["auto", "ref", "model"], value="auto", label="FFT mode")
fft_alpha = gr.Slider(0.1, 4.0, value=1.0, step=0.1, label="FFT alpha (1/f)")
status = gr.Textbox(label="Status", interactive=False)
def _wrap(preset, inp_img, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_file, lut_strength, awb_ref, fft_ref, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha):
jpeg_qmax = 96
lut_path = lut_file.name if getattr(lut_file, 'name', None) else None
# Build effective parameters mapping from UI inputs
params = {
"noise_std": float(noise_std),
"clahe_clip": float(clahe_clip),
"tile": int(tile),
"cutoff": float(cutoff),
"fstrength": float(fstrength),
"awb": bool(awb),
"sim_camera": bool(sim_camera),
"lut_file": lut_path,
"lut_strength": float(lut_strength),
"awb_ref": awb_ref,
"fft_ref": fft_ref,
"seed": int(seed) if (seed is not None and str(seed) != "") else None,
"jpeg_cycles": int(jpeg_cycles),
"jpeg_qmin": int(jpeg_qmin),
"jpeg_qmax": int(jpeg_qmax),
"vignette_strength": float(vignette_strength),
"chroma_strength": float(chroma_strength),
"iso_scale": float(iso_scale),
"read_noise": float(read_noise),
"no_no_bayer": bool(no_no_bayer),
"randomness": float(randomness),
"perturb": float(perturb),
"phase_perturb": float(phase_perturb),
"radial_smooth": int(radial_smooth),
"fft_mode": fft_mode,
"fft_alpha": float(fft_alpha),
}
# Overlay preset overrides (builtin or custom)
overrides = get_preset_overrides(preset)
for k, v in overrides.items():
params[k] = v
# Call the pipeline with explicit params
try:
result, msg, exif = run_process_with_exif(
inp_img,
noise_std=params.get("noise_std"),
clahe_clip=params.get("clahe_clip"),
tile=params.get("tile"),
cutoff=params.get("cutoff"),
fstrength=params.get("fstrength"),
awb=params.get("awb"),
sim_camera=params.get("sim_camera"),
lut_file=params.get("lut_file"),
lut_strength=params.get("lut_strength"),
awb_ref=params.get("awb_ref"),
fft_ref=params.get("fft_ref"),
seed=params.get("seed"),
jpeg_cycles=params.get("jpeg_cycles"),
jpeg_qmin=params.get("jpeg_qmin"),
jpeg_qmax=params.get("jpeg_qmax"),
vignette_strength=params.get("vignette_strength"),
chroma_strength=params.get("chroma_strength"),
iso_scale=params.get("iso_scale"),
read_noise=params.get("read_noise"),
no_no_bayer=params.get("no_no_bayer"),
randomness=params.get("randomness"),
perturb=params.get("perturb"),
phase_perturb=params.get("phase_perturb"),
radial_smooth=params.get("radial_smooth"),
fft_mode=params.get("fft_mode"),
fft_alpha=params.get("fft_alpha"),
)
except Exception as e:
return None, None, None, None, None, "", f"Processing error: {e}"
if result is None:
return None, None, None, None, None, "", msg
try:
hist_img, fft_img, radial_img = make_analysis_images(result)
except Exception as e:
return result, None, None, None, None, exif, f"Analysis error: {e}"
# Delta preview
try:
diff_img, mse_val, metrics = make_delta_image(inp_img, result)
except Exception as e:
diff_img, mse_val, metrics = None, 0.0, f"delta error: {e}"
return result, hist_img, fft_img, radial_img, diff_img, metrics, exif, msg
btn = gr.Button("Run")
btn.click(
_wrap,
inputs=[preset, inp, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_file, lut_strength, awb_ref, fft_ref, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha],
outputs=[out, hist_out, fft_out, radial_out, delta_out, delta_metrics, exif_out, status],
)
def _save_preset(name, preset, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_strength, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha):
if not name:
return "Provide a name to save the preset"
data = {
"noise_std": float(noise_std),
"clahe_clip": float(clahe_clip),
"tile": int(tile),
"cutoff": float(cutoff),
"fstrength": float(fstrength),
"randomness": float(randomness),
"perturb": float(perturb),
"phase_perturb": float(phase_perturb),
"radial_smooth": int(radial_smooth),
"jpeg_cycles": int(jpeg_cycles),
"jpeg_qmin": int(jpeg_qmin),
"vignette_strength": float(vignette_strength),
"chroma_strength": float(chroma_strength),
"iso_scale": float(iso_scale),
"read_noise": float(read_noise),
"no_no_bayer": bool(no_no_bayer),
}
save_custom_preset(name, data)
return f"Saved preset: {name}"
save_preset_btn.click(_save_preset, inputs=[preset_name, preset, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_strength, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha], outputs=[preset_summary_box])
def _update_summary(selected):
return preset_summary(selected)
preset.change(_update_summary, inputs=[preset], outputs=[preset_summary_box])
return demo
if __name__ == "__main__":
iface = build_interface()
iface.launch(server_name="0.0.0.0", server_port=7860)
|