Spaces:
Sleeping
Sleeping
File size: 35,517 Bytes
5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 ac764a6 5ff8f40 5b8d529 5ff8f40 6aed8e6 ac764a6 6aed8e6 c3fe34b 6aed8e6 ac764a6 6aed8e6 5ff8f40 c3fe34b 5ff8f40 c3fe34b 5ff8f40 ac764a6 5ff8f40 ac764a6 c3fe34b ac764a6 5ff8f40 c3fe34b 5ff8f40 ac764a6 5ff8f40 5b8d529 5ff8f40 c3fe34b 5ff8f40 6aed8e6 5ff8f40 c3fe34b 5b8d529 6aed8e6 5b8d529 c3fe34b 6aed8e6 c3fe34b 4474bd3 6aed8e6 4474bd3 6aed8e6 ac764a6 6aed8e6 ac764a6 6aed8e6 ac764a6 4474bd3 6aed8e6 ac764a6 c3fe34b 5ff8f40 c3fe34b 5ff8f40 6aed8e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import streamlit as st
import requests
import os
import json
from pypdf import PdfReader
from groq import Groq
from dotenv import load_dotenv
import time
import ast
# Load environment variables
load_dotenv()
# Function to extract text from the uploaded PDF
def extract_text_from_pdf(pdf_file):
text = ""
try:
reader = PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
except Exception as e:
st.error(f"An error occurred while reading the PDF: {e}")
return text
# Function to classify the extracted text using the LLM
def classification_LLM(text):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given some text which mostly describes a problem. You have to classify the problem according to a list of choices. More than one choice can also be applicable. Return as a array of applicable CHOICES only. Only return the choices that you are very sure about\n\n#CHOICES\n\n2D Measurement: Diameter, thickness, etc.\n\nAnomaly Detection: Scratches, dents, corrosion\n\nPrint Defect: Smudging, misalignment\n\nCounting: Individual components, features\n\n3D Measurement: Volume, surface area\n\nPresence/Absence: Missing components, color deviations\n\nOCR: Optical Character Recognition, Font types and sizes to be recognized, Reading speed and accuracy requirements\n\nCode Reading: Types of codes to read (QR, Barcode)\n\nMismatch Detection: Specific features to compare for mismatches, Component shapes, color mismatches\n\nClassification: Categories of classes to be identified, Features defining each class\n\nAssembly Verification: Checklist of components or features to verify, Sequence of assembly to be followed\n\nColor Verification: Color standards or samples to match\n"
},
{
"role": "user",
"content": text
}
],
temperature=0.21,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion:
answer += chunk.choices[0].delta.content or ""
return answer
def obsjsoncreate(json_template,text,ogtext):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a text snippet. You will also be given a JSON where some of the fields match with the bullet points in the text. I want you return a JSON where only the fields and subproperties mentioned in the text are present. DONT OUTPUT ANYTHING OTHER THAN THE JSON\n"
},
{
"role": "user",
"content": "JSON:"+str(json_template)+"\nText:"+text
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
cutjson=""
for chunk in completion:
cutjson += chunk.choices[0].delta.content or ""
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given a JSON where there are properties and their descriptions. You need to fill up the JSON subproperty \"USer Answer\" from the details given in the text. If you are not sure of any field, leave the \"User Answer\" as TBD. Give the JSON output with the filled fields only. ENSURE THE JSON IS VALID AND PROPERLY FORMATTED. DO NOT OUTPUT ANYTHING OTHER THAN THE JSON."
},
{
"role": "user",
"content": "JSON: "+cutjson+"\n Text: "+ogtext
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion2:
answer += chunk.choices[0].delta.content or ""
return answer
def bizobjjsoncreate(json_template,text):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given a JSON where there are properties and their descriptions. You need to fill up the JSON subproperty \"USer Answer\" from the details given in the text. If you are not sure of any field, leave the \"User Answer\" as TBD. Make sure you dont leave out a single field of the JSON. ENSURE THE JSON IS VALID AND PROPERLY FORMATTED. DO NOT OUTPUT ANYTHING OTHER THAN THE JSON."
},
{
"role": "user",
"content": "JSON: "+str(json_template)+"\n Text: "+text
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion2:
answer += chunk.choices[0].delta.content or ""
return answer
def question_create(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a JSON where some subproperties labelled \"User Answer\" are marked as \"TBD\". I want you to create questions that you as an assistant would ask the user in order to fill up the User Answer field. Return all the questions for the user in an array. DONT OUTPUT ANYTHING OTHER THAN THE QUESTION ARRAY."
},
{
"role": "user",
"content": str(json_template)
}
],
temperature=0.21,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion:
answer += chunk.choices[0].delta.content or ""
# print(answer)
client = Groq()
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are an experienced writer. You will be given an array of questions. \nSome questions will ask to upload images. Ignore any of these type of questions.\nSome questions ask about different identities or descriptions of the same thing. I want you to merge the questions so as to ask input from them once.\nConvert all questions so that more of a professional is maintained. AVOID REDUNDANCY. DONT RETURN MORE THAN 15 QUESTIONS.\nRETURN AN ARRAY OF THE QUESTIONS ONLY. DO NOT RETURN ANYTHING ELSE. "
},
{
"role": "user",
"content": answer
}
],
temperature=0.45,
max_tokens=4240,
top_p=1,
stream=True,
stop=None,
)
final=""
for chunk in completion:
final+=chunk.choices[0].delta.content or ""
return final
def qapair_create(script):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given two arrays, questions and answer. I want you to create a question answer pair. For example, \n#INPUT\nQuestion=['What is my name?', 'What is your age?']\nAnswer=['Mohan','69']\n\n#OUTPUT\n['Question:What is my name? Answer:Mohan','What is your age? Answer:69']\n\nDONT RETURN ANYTHING OTHER THAN THE FINAL ARRAY"
},
{
"role": "user",
"content": str(script)
}
],
temperature=0.5,
max_tokens=4048,
top_p=1,
stream=True,
stop=None,
)
qapair = ""
for chunk in completion:
qapair += chunk.choices[0].delta.content or ""
return qapair
# print(qapair)
# print(obs_json_template+bizobj_json_template)
# print("Question Answer:"+str(qapair)+"\nJSON:\n"+str(obs_json_template+bizobj_json_template))
# print(str(obs_json_template+bizobj_json_template))
def conflict_detect(json1,json2):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are an experienced copywriter who understands engineering concepts. You will be given 2 JSONs. I want you to compare the \"User Answer\" field between the 2 JSONs, and then check for conflicts. Check for any conflicts within numerical values. If you find a conflict, mark the field as CONFLICT and always give the reasoning behind the conflict. However be careful to check if the 2 fields to be compared essentially mean the same thing, in that case return either answer. If either field says TBD, ignore the test and output the test where user answer s not TBD.\nFor example:\nUser Answer 1: \"TBD\"\nUser Answer 2: \"The budget is 15000\"\nResult: \"The budget is 15000\"\n\nUser Answer 1: \"The expected ROI is 5 years\"\nUser Answer 2:\"The ROI is to be within 15 years\"\nResult:\"CONFLICT - The first answer mentions ROI as 5 years while the second answer mentions ROI as 15 years\"\n\nUser Answer 1: \"The KPIs to be measured are speed and accuracy\"\nUser Answer 2: \"TBD\"\nResult: \"The KPIs to be measured are speed and accuracy\"\n\nUser Answer 1: \"There will be 1GB Internet Connection\"\nUser Answer 2: \"There will be EthernetIP present\"\nResult: \"There will be EthernetIP with 1GB internet connection present\"\n\nIn the end only return the filled JSON. DONT RETURN ANYTHING OTHER THAN THE JSON."
},
{
"role": "user",
"content": "JSON 1:\n"+str(json1)+"\nJSON 2:\n"+str(json2)
}
],
temperature=0.24,
max_tokens=5220,
top_p=1,
stream=True,
stop=None,
)
filled_json=""
for chunk in completion:
filled_json+=chunk.choices[0].delta.content or ""
# completion2 = client.chat.completions.create(
# model="llama-3.1-70b-versatile",
# messages=[
# {
# "role": "system",
# "content": "You are a helpful assistant. You will be given a JSON where some subproperties marked as \"User Answer\" which have fields marked as \"CONFLICT\". \nFor these fields, there is also a reason. In a professional tone, formulate a question asking as to what the correct answer should be while explaining the reason clearly. Return an array of all these questions. DONT OUTPUT ANYTHING OTHER THAN THE ARRAY.\n"
# },
# {
# "role": "user",
# "content": filled_json
# }
# ],
# temperature=0.24,
# max_tokens=5220,
# top_p=1,
# stream=True,
# stop=None,
# )
# questions=""
# for chunk in completion2:
# questions+=chunk.choices[0].delta.content or ""
return filled_json
def answer_refill(qapair,json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a Question-answer pair. You will be given a json. Some subproperties in the JSONs labelled \"User Answer\" are marked as TBD. Based on the question answer pair, I want you to fill the Answer of the question answer pair as it is into the \"User answer\" subproperty. Check the description of the field against the question and be sure to fill the correct field for the correct question. Make sure you return the full JSON, without missing any field. After filling, merge the two filled JSONs. Then return the final completely filled JSON. DONT OUTPUT ANYTHING OTHER THAN THE JSONS."
},
{
"role": "user",
"content": "Question Answer:"+str(qapair)+"\nJSON:\n"+str(json_template)
}
],
temperature=1,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
filled_json=""
for chunk in completion2:
filled_json+=chunk.choices[0].delta.content or ""
# print(filled_json)
return filled_json
def response_filter(record,key,opt):
if opt==1:
client = Groq(api_key=os.getenv("GROQ_API_KEY_1"))
else:
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a big JSON. I want to only extract one key out of that. RETURN THE VARIABLE ASKED FOR ONLY"
},
{
"role": "user",
"content": "Var="+str(key)+"\nJSON:\n"+str(record)
}
],
temperature=0.38,
max_tokens=7830,
top_p=1,
stream=True,
stop=None,
)
filled_json=""
for chunk in completion:
filled_json+=chunk.choices[0].delta.content or ""
# print(filled_json)
return filled_json
def executive_summary_complete(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a professional copyrighter. You will be given a JSON, I want you to create a complete executive summary with headers and subheaders. It should be a structured document. \"User Answer\" are what are the answers you have to focus on. Dont skip any of the Fields in both JSONs. Use the Description to frame the User answer. DONT OUTPUT ANYTHING OTHER THAN THE SUMMARY."
},
{
"role": "user",
"content": str(json_template)
}
],
temperature=0.73,
max_tokens=5610,
top_p=1,
stream=True,
stop=None,
)
final_summ=""
for chunk in completion:
final_summ+=chunk.choices[0].delta.content or ""
return final_summ
def executive_summary(questions):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given an array of engineering questions. There maybe some repetitions in the questions. Remove them.\n\nNow create a professional mail with this approach:\nyou thank the recipient for the last meeting. Then after talking with your team you have a series of questions. You then list out the questions in a bullet point fashion."
},
{
"role": "user",
"content": str(questions)
}
],
temperature=0.65,
max_tokens=5220,
top_p=1,
stream=True,
stop=None,
)
final_summ=""
for chunk in completion:
final_summ+=chunk.choices[0].delta.content or ""
return final_summ
def conflict_summary(json):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a JSON. The fields where \"User Answer\" is marked as \"CONFLICT\", I want you to make questions asking the difference only for these fields. If either User Answer is marked as TBD, DONT CREATE QUESTIONS FOR THAT. Remember to always include the reason for conflict. The final output should be a mail which outlines all the questions. The mail should say how after discussion with the team you have come up with these questions. Maintain a professional tone. Refer to JSON1 as initial communication. Refer to JSON2 as latest communication. Dont mention the words \"JSON1\" and \"JSON2\" anywhere"
},
{
"role": "user",
"content": str(json)
}
],
temperature=0.65,
max_tokens=7220,
top_p=1,
stream=True,
stop=None,
)
final_summ=""
for chunk in completion:
final_summ+=chunk.choices[0].delta.content or ""
return final_summ
def airtable_retrieve(identifier):
base_id = 'appcl0egQeE4pP5ID'
table_name = 'tblfQBynpcfdDUywV'
api_key = os.getenv("AIRTABLE_KEY")
# API endpoint
base_url = f'https://api.airtable.com/v0/{base_id}/{table_name}'
# Headers for authentication
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
def get_record_by_identifier(identifier):
try:
# Construct the filter formula
filter_formula = f"{{Identifier}} = '{identifier}'"
# Make the API request
response = requests.get(
base_url,
headers=headers,
params={'filterByFormula': filter_formula}
)
# Check if the request was successful
response.raise_for_status()
# Parse the JSON response
data = response.json()
if data['records']:
if len(data['records']) > 1:
print(f"Warning: Multiple records found for identifier '{identifier}'. Returning the first one.")
return data['records'][-1]['fields']
else:
raise ValueError(f"No record found for identifier '{identifier}'")
except requests.exceptions.RequestException as e:
print(f"An error occurred while making the request: {str(e)}")
return None
except ValueError as e:
print(str(e))
return None
except Exception as e:
print(f"An unexpected error occurred: {str(e)}")
return None
# Example usage
record = get_record_by_identifier(identifier)
# print(record)
if record:
# print("Record found:")
# for field, value in record.items():
# print(f"{field}: {value}")
return record
else:
return "404"
def combine_json_files(directory):
combined_data = {}
for filename in os.listdir(directory):
if filename.endswith('.json'):
file_path = os.path.join(directory, filename)
key = os.path.splitext(filename)[0] # Use filename without extension as key
with open(file_path, 'r') as file:
combined_data[key] = json.load(file)
return combined_data
def prepare_json_string(json_data):
# Convert the JSON data to a string, escaping any problematic characters
return json.dumps(json.dumps(json_data))
def airtable_write_main(json_strings,id):
API_KEY = os.getenv("AIRTABLE_KEY")
BASE_ID = 'appcl0egQeE4pP5ID'
TABLE_ID = 'tblfQBynpcfdDUywV'
url = f'https://api.airtable.com/v0/{BASE_ID}/{TABLE_ID}'
headers = {
'Authorization': f'Bearer {API_KEY}',
'Content-Type': 'application/json'
}
# Prepare the record for Airtable
record = {
"fields": {
"Identifier": id, # You may want to generate a unique identifier here
"BIZ_OBS_JSON": json_strings.get("BIZ_OBS_JSON", "[]"),
"PROD_VAR_INFO_JSON": json_strings.get("PROD_VAR_INFO_JSON", "[]"),
"CUSTOMER_DEPENDENCY_JSON": json_strings.get("CUSTOMER_DEPENDENCY_JSON", "[]"),
"MATERIAL_HANDLING_JSON": json_strings.get("MATERIAL_HANDLING_JSON", "[]"),
"SOFTWARE_JSON": json_strings.get("SOFTWARE_JSON", "[]"),
"ACCEPTANCE_JSON": json_strings.get("ACCEPTANCE_JSON", "[]"),
"OBS_JSON": json_strings.get("OBS_JSON", "[]")
}
}
# Prepare the payload for Airtable
payload = {
"records": [record]
}
# Make the POST request to add the record
response = requests.post(url, headers=headers, data=json.dumps(payload))
# Check if the request was successful
if response.status_code == 200:
print("Record added successfully!")
else:
print(f"Failed to add record. Status code: {response.status_code}, Error: {response.text}")
def chunk_data(data, chunk_size=10):
if isinstance(data, dict):
# If data is a dictionary, convert it to a list of key-value pairs
items = list(data.items())
elif isinstance(data, list):
items = data
else:
raise TypeError("Data must be either a dictionary or a list")
return [dict(items[i:i + chunk_size]) for i in range(0, len(items), chunk_size)]
def airtable_write(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Groq inference
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a unstructured JSON. I want you to convert it into a fully structured JSON which will become a structured CSV. The headings of the CSV are to be \\\"Category\\\",\\\"Sub-category\\\",\\\"Description\\\" and \\\"User Answer\\\". So shuffle around the fields accordingly. \nFields marked \"Category\" are to be directly picked as the \"Category\" for the CSV. If there is \"Observation type\", then that becomes the Category. \nDONT LEAVE ANY FIELD. MAKE SURE ALL FIELDS ARE INCLUDED IN THE RESULT. DONT OUTPUT ANYTHING OTHER THAN THE JSON. ONLY OUTPUT THE JSON.\n"
},
{
"role": "user",
"content": json_template
}
],
temperature=0.25,
max_tokens=8000,
top_p=1,
stream=True,
# response_format={"type": "json_object"},
stop=None,
)
content=""
for chunk in completion:
content+=chunk.choices[0].delta.content or ""
# Get the structured JSON from Groq
groq_json = json.loads(content)
with open("groq_json.json", "w") as file:
json.dump(groq_json, file, indent=4)
API_KEY = os.getenv("AIRTABLE_KEY")
BASE_ID = 'appcl0egQeE4pP5ID'
TABLE_ID = 'tbl2AaOSxyBv6ObR5'
url = f'https://api.airtable.com/v0/{BASE_ID}/{TABLE_ID}'
headers = {
'Authorization': f'Bearer {API_KEY}',
'Content-Type': 'application/json'
}
# Chunk the data into batches of 10
def chunk_data(data, chunk_size=10):
for i in range(0, len(data), chunk_size):
yield data[i:i + chunk_size]
# Process each chunk and send it to Airtable
for batch in chunk_data(groq_json):
# Format the current batch for Airtable API
airtable_data = {
"records": [
{
"fields": {
"Category": item["Category"],
"Sub-category": item["Sub-category"],
"Description": item["Description"],
"User Answer": item["User Answer"]
}
} for item in batch
]
}
# Make the POST request to add records
response = requests.post(url, headers=headers, data=json.dumps(airtable_data))
# Check if the request was successful
if response.status_code == 200:
print(f"Batch of {len(batch)} records added successfully!")
else:
print(f"Failed to add batch. Status code: {response.status_code}, Error: {response.text}")
def process_new_customer(unique_id):
st.write(f"Processing new customer with ID: {unique_id}")
st.write("Please upload the first communication:")
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
if uploaded_file is not None:
button1(uploaded_file,unique_id)
# # Add your document processing steps for new customers here
# # For example:
# uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
def button1(uploaded_file,unique_id):
st.write("Parsing Document ...")
st.session_state.text = extract_text_from_pdf(uploaded_file)
st.write("Running Classification Algorithm...")
st.session_state.classification_result = classification_LLM(st.session_state.text)
json_path='observationsJSON.json'
with open(json_path, 'r') as file:
obs_json_template = json.load(file)
final_obs_json = obsjsoncreate(obs_json_template, st.session_state.classification_result, st.session_state.text)
st.session_state.obs = final_obs_json
json_path='Biz_Obj.json'
with open(json_path, 'r') as file:
bizobj_json = json.load(file)
final_bizobj_json = bizobjjsoncreate(bizobj_json, st.session_state.text)
json_path='Prod_var_info.json'
with open(json_path, 'r') as file:
prodvarinfo_json = json.load(file)
final_prodvarinfo_json = bizobjjsoncreate(prodvarinfo_json, st.session_state.text)
json_path='Material_handling.json'
with open(json_path, 'r') as file:
materialhandling_json = json.load(file)
final_materialhandling_json = bizobjjsoncreate(materialhandling_json, st.session_state.text)
json_path='software.json'
with open(json_path, 'r') as file:
software_json = json.load(file)
final_software_json = bizobjjsoncreate(software_json, st.session_state.text)
json_path='Customer_dependency.json'
with open(json_path, 'r') as file:
customerdependency_json = json.load(file)
final_customerdependency_json = bizobjjsoncreate(customerdependency_json, st.session_state.text)
json_path='acceptance.json'
with open(json_path, 'r') as file:
acceptance_json = json.load(file)
final_acceptance_json = bizobjjsoncreate(acceptance_json, st.session_state.text)
st.session_state.bizobj = final_bizobj_json
st.session_state.prodvarinfo = final_prodvarinfo_json
st.session_state.materialhandling = final_materialhandling_json
st.session_state.software = final_software_json
st.session_state.customerdependency = final_customerdependency_json
st.session_state.acceptance = final_acceptance_json
st.write("Creating Questions...")
questionobs = question_create(final_obs_json)
question_bizobj = question_create(final_bizobj_json)
question_prodvarinfo = question_create(final_prodvarinfo_json)
question_materialhandling = question_create(final_materialhandling_json)
question_software = question_create(final_software_json)
question_customerdependency = question_create(final_customerdependency_json)
question_acceptance = question_create(final_acceptance_json)
totquestions=questionobs+question_bizobj+question_prodvarinfo+question_materialhandling+question_software+question_customerdependency+question_acceptance
st.write("Creating Question Email...")
exec_questions=executive_summary(totquestions)
final_json=final_bizobj_json+final_prodvarinfo_json+final_materialhandling_json+final_software_json+final_customerdependency_json+final_acceptance_json+final_obs_json
exec_summ=executive_summary_complete(final_json)
st.write(exec_summ)
st.write("Here is the Composed Mail for the customers ->")
st.write(exec_questions)
json_strings = {
"BIZ_OBS_JSON": st.session_state.bizobj,
"PROD_VAR_INFO_JSON": st.session_state.prodvarinfo,
"CUSTOMER_DEPENDENCY_JSON": st.session_state.customerdependency,
"MATERIAL_HANDLING_JSON": st.session_state.materialhandling,
"SOFTWARE_JSON": st.session_state.software,
"ACCEPTANCE_JSON": st.session_state.acceptance,
"OBS_JSON": st.session_state.obs
}
airtable_write_main(json_strings,unique_id)
def process_registered_customer(unique_id):
st.write(f"Processing registered customer with ID: {unique_id}")
# Add your document processing steps for registered customers here
# For example:
record=airtable_retrieve(unique_id)
if record == '404':
st.write("Record Not Found. Please restart and check identifier")
return
json_data=record
# st.write(record)
# parsed_data=json.loads(str(record))
obs_json = json_data.get("OBS_JSON")
biz_obs_json = json_data.get("BIZ_OBS_JSON")
software_json = json_data.get("SOFTWARE_JSON")
customer_dependency_json = json_data.get("CUSTOMER_DEPENDENCY_JSON")
prod_var_info_json = json_data.get("PROD_VAR_INFO_JSON")
material_handling_json = json_data.get("MATERIAL_HANDLING_JSON")
acceptance_json = json_data.get("ACCEPTANCE_JSON")
# st.write(biz_obs_json)
# biz_obs_json = response_filter(record,"BIZ_OBS_JSON",1)
# prod_var_info_json = response_filter(record,"PROD_VAR_INFO_JSON",2)
# material_handling_json = response_filter(record,"MATERIAL_HANDLING_JSON",1)
# software_json = response_filter(record,"SOFTWARE_JSON",2)
# customer_dependency_json = response_filter(record,"CUSTOMER_DEPENDENCY_JSON",1)
# acceptance_json = response_filter(record,"ACCEPTANCE_JSON",2)
# obs_json = response_filter(record,"OBS_JSON",1)
st.write("Records Retrieved. Please enter the Questions and Answers:")
qa=st.chat_input("Please enter the questions given to customer and their answers:")
if qa:
qapair=qapair_create(qa)
# st.write(qapair)
json_path='Biz_Obj.json'
with open(json_path, 'r') as file:
new_bizobj_json = json.load(file)
filled_bizobj = answer_refill(qapair,new_bizobj_json)
json_path='Prod_var_info.json'
with open(json_path, 'r') as file:
new_prodvarinfo_json = json.load(file)
filled_prodvar = answer_refill(qapair,new_prodvarinfo_json)
json_path='Material_handling.json'
with open(json_path, 'r') as file:
new_materialhandling_json = json.load(file)
filled_material_handling = answer_refill(qapair,new_materialhandling_json)
json_path='software.json'
with open(json_path, 'r') as file:
new_software_json = json.load(file)
filled_software = answer_refill(qapair,new_software_json)
json_path='Customer_dependency.json'
with open(json_path, 'r') as file:
new_customerdependency_json = json.load(file)
filled_customer_dependency = answer_refill(qapair,new_customerdependency_json)
json_path='acceptance.json'
with open(json_path, 'r') as file:
new_acceptance_json = json.load(file)
filled_acceptance = answer_refill(qapair,new_acceptance_json)
# filled_bizobj=answer_refill(qapair,biz_obs_json)
# filled_prodvar=answer_refill(qapair,prod_var_info_json)
# filled_material_handling=answer_refill(qapair,material_handling_json)
# filled_software=answer_refill(qapair,software_json)
# filled_customer_dependency=answer_refill(qapair,customer_dependency_json)
filled_obs=answer_refill(qapair,obs_json)
# filled_acceptance=answer_refill(qapair,acceptance_json)
# st.write("Biz_obs_JSON")
# st.write(biz_obs_json)
# st.write("Filled_JSON")
# st.write(filled_bizobj)
print("reached")
# st.write(filled_bizobj)
st.write("Checking for Conflicts...")
conquest_bizobj=conflict_detect(biz_obs_json,filled_bizobj)
conquest_prodvar=conflict_detect(prod_var_info_json,filled_prodvar)
conquest_material_handling=conflict_detect(material_handling_json,filled_material_handling)
conquest_software=conflict_detect(software_json,filled_software)
conquest_customer_dependency=conflict_detect(customer_dependency_json,filled_customer_dependency)
conquest_acceptance=conflict_detect(acceptance_json,filled_acceptance)
conquest_obs=conflict_detect(obs_json,filled_obs)
# st.write(conquest_bizobj)
st.write("Executive summary ....")
st.write("Creating Question Email...")
totquestions=conquest_obs+conquest_bizobj+conquest_prodvar+conquest_material_handling+conquest_software+conquest_customer_dependency+conquest_acceptance
final_json=filled_bizobj+filled_prodvar+filled_material_handling+filled_software+filled_customer_dependency+filled_acceptance+filled_obs
exec_summ=conflict_summary(totquestions)
# exec_summ=executive_summary(totquestions)
st.write(exec_summ)
# final_json=filled_bizobj+filled_prodvar+filled_material_handling+filled_software+filled_customer_dependency+filled_acceptance+filled_obs
exec_summ=executive_summary_complete(final_json)
st.write(exec_summ)
json_strings = {
"BIZ_OBS_JSON": filled_bizobj,
"PROD_VAR_INFO_JSON": filled_prodvar,
"CUSTOMER_DEPENDENCY_JSON": filled_customer_dependency,
"MATERIAL_HANDLING_JSON": filled_material_handling,
"SOFTWARE_JSON": filled_software,
"ACCEPTANCE_JSON": filled_acceptance,
"OBS_JSON": filled_obs
}
airtable_write_main(json_strings,unique_id)
def main():
st.title("Qualitas Sales Chatbot")
col1, col2 = st.columns(2)
with col1:
new_customer = st.button("New Customer")
with col2:
registered_customer = st.button("Registered Customer")
if new_customer:
st.session_state.workflow = "new"
st.session_state.step = "id_input"
elif registered_customer:
st.session_state.workflow = "registered"
st.session_state.step = "id_input"
if "workflow" in st.session_state:
if st.session_state.step == "id_input":
st.write("Please Enter a Unique Identifier:")
unique_id = st.chat_input("Please enter a unique identifier:")
if unique_id:
st.session_state.unique_id = unique_id
st.session_state.step = "processing"
st.rerun()
if st.session_state.step == "processing":
if st.session_state.workflow == "new":
process_new_customer(st.session_state.unique_id)
else:
process_registered_customer(st.session_state.unique_id)
# st.session_state.clear()
if __name__ == "__main__":
main() |