Spaces:
Sleeping
Sleeping
File size: 19,357 Bytes
5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 6aed8e6 5b8d529 6aed8e6 5b8d529 6aed8e6 5ff8f40 5b8d529 5ff8f40 5b8d529 5ff8f40 6aed8e6 5ff8f40 5b8d529 6aed8e6 5b8d529 5ff8f40 6aed8e6 5ff8f40 6aed8e6 5ff8f40 6aed8e6 5b8d529 6aed8e6 5ff8f40 6aed8e6 5ff8f40 6aed8e6 5b8d529 6aed8e6 5ff8f40 6aed8e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import streamlit as st
import requests
import os
import json
from pypdf import PdfReader
from groq import Groq
from dotenv import load_dotenv
import time
import ast
# Load environment variables
load_dotenv()
# Function to extract text from the uploaded PDF
def extract_text_from_pdf(pdf_file):
text = ""
try:
reader = PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
except Exception as e:
st.error(f"An error occurred while reading the PDF: {e}")
return text
# Function to classify the extracted text using the LLM
def classification_LLM(text):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given some text which mostly describes a problem. You have to classify the problem according to a list of choices. More than one choice can also be applicable. Return as a array of applicable CHOICES only. Only return the choices that you are very sure about\n\n#CHOICES\n\n2D Measurement: Diameter, thickness, etc.\n\nAnomaly Detection: Scratches, dents, corrosion\n\nPrint Defect: Smudging, misalignment\n\nCounting: Individual components, features\n\n3D Measurement: Volume, surface area\n\nPresence/Absence: Missing components, color deviations\n\nOCR: Optical Character Recognition, Font types and sizes to be recognized, Reading speed and accuracy requirements\n\nCode Reading: Types of codes to read (QR, Barcode)\n\nMismatch Detection: Specific features to compare for mismatches, Component shapes, color mismatches\n\nClassification: Categories of classes to be identified, Features defining each class\n\nAssembly Verification: Checklist of components or features to verify, Sequence of assembly to be followed\n\nColor Verification: Color standards or samples to match\n"
},
{
"role": "user",
"content": text
}
],
temperature=0.21,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion:
answer += chunk.choices[0].delta.content or ""
return answer
def obsjsoncreate(json_template,text,ogtext):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a text snippet. You will also be given a JSON where some of the fields match with the bullet points in the text. I want you return a JSON where only the fields and subproperties mentioned in the text are present. DONT OUTPUT ANYTHING OTHER THAN THE JSON\n"
},
{
"role": "user",
"content": "JSON:"+str(json_template)+"\nText:"+text
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
cutjson=""
for chunk in completion:
cutjson += chunk.choices[0].delta.content or ""
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given a JSON where there are properties and their descriptions. You need to fill up the JSON subproperty \"USer Answer\" from the details given in the text. If you are not sure of any field, leave the \"User Answer\" as TBD. Give the JSON output with the filled fields only. ENSURE THE JSON IS VALID AND PROPERLY FORMATTED. DO NOT OUTPUT ANYTHING OTHER THAN THE JSON."
},
{
"role": "user",
"content": "JSON: "+cutjson+"\n Text: "+ogtext
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion2:
answer += chunk.choices[0].delta.content or ""
return answer
def bizobjjsoncreate(json_template,text):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful classification assistant. You understand engineering concepts. You will be given a JSON where there are properties and their descriptions. You need to fill up the JSON subproperty \"USer Answer\" from the details given in the text. If you are not sure of any field, leave the \"User Answer\" as TBD. Give the JSON output with the filled fields only. ENSURE THE JSON IS VALID AND PROPERLY FORMATTED. DO NOT OUTPUT ANYTHING OTHER THAN THE JSON."
},
{
"role": "user",
"content": "JSON: "+str(json_template)+"\n Text: "+text
}
],
temperature=0.21,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion2:
answer += chunk.choices[0].delta.content or ""
return answer
def question_create(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a JSON where some subproperties labelled \"User Answer\" are marked as \"TBD\". I want you to create questions that you as an assistant would ask the user in order to fill up the User Answer field. Return all the questions for the user in an array. DONT OUTPUT ANYTHING OTHER THAN THE QUESTION ARRAY."
},
{
"role": "user",
"content": str(json_template)
}
],
temperature=0.21,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
answer = ""
for chunk in completion:
answer += chunk.choices[0].delta.content or ""
client = Groq()
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are an experienced writer. You will be given an array of questions. \nSome questions will ask to upload images. Ignore any of these type of questions.\nSome questions ask about different identities or descriptions of the same thing. I want you to merge the questions so as to ask input from them once.\nConvert all questions so that more of a professional but also a bit of a funny tone is maintained. AVOID REDUNDANCY. DONT RETURN MORE THAN 15 QUESTIONS.\nRETURN AN ARRAY OF THE QUESTIONS ONLY. DO NOT RETURN ANYTHING ELSE. "
},
{
"role": "user",
"content": answer
}
],
temperature=0.73,
max_tokens=2240,
top_p=1,
stream=True,
stop=None,
)
final=""
for chunk in completion:
final+=chunk.choices[0].delta.content or ""
return final
def answer_refill(questions,answers,obs_json_template,bizobj_json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given two arrays, questions and answer. I want you to create a question answer pair. For example, \n#INPUT\nQuestion=['What is my name?', 'What is your age?']\nAnswer=['Mohan','69']\n\n#OUTPUT\n['Question:What is my name? Answer:Mohan','What is your age? Answer:69']\n\nDONT RETURN ANYTHING OTHER THAN THE FINAL ARRAY"
},
{
"role": "user",
"content": "Question="+str(questions)+"\nAnswer="+str(answers)
}
],
temperature=0.5,
max_tokens=4048,
top_p=1,
stream=True,
stop=None,
)
qapair = ""
for chunk in completion:
qapair += chunk.choices[0].delta.content or ""
# print(qapair)
# print(obs_json_template+bizobj_json_template)
# print("Question Answer:"+str(qapair)+"\nJSON:\n"+str(obs_json_template+bizobj_json_template))
completion2 = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a Question-answer pair. You will be given a json. Some subproperties in the JSONs labelled \"User Answer\" are marked as TBD. Based on the question answer pair, I want you to fill the Answer of the question answer pair as it is into the \"User answer\" subproperty. Make sure you return the full JSON, without missing any field. After filling, merge the two filled JSONs. Then return the final completely filled JSON. DONT OUTPUT ANYTHING OTHER THAN THE JSONS."
},
{
"role": "user",
"content": "Question Answer:"+str(qapair)+"\nJSON:\n"+str(obs_json_template+bizobj_json_template)
}
],
temperature=1,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
filled_json=""
for chunk in completion2:
filled_json+=chunk.choices[0].delta.content or ""
# print(filled_json)
return filled_json
def executive_summary(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a professional copyrighter. You will be given a JSON, I want you to create a complete executive summary with headers and subheaders. It should be a structured document. \"User Answer\" are what are the answers you have to focus on. Dont skip any of the Fields in both JSONs. Use the Description to frame the User answer. DONT OUTPUT ANYTHING OTHER THAN THE SUMMARY."
},
{
"role": "user",
"content": str(json_template)
}
],
temperature=0.73,
max_tokens=5610,
top_p=1,
stream=True,
stop=None,
)
final_summ=""
for chunk in completion:
final_summ+=chunk.choices[0].delta.content or ""
return final_summ
def chunk_data(data, chunk_size=10):
if isinstance(data, dict):
# If data is a dictionary, convert it to a list of key-value pairs
items = list(data.items())
elif isinstance(data, list):
items = data
else:
raise TypeError("Data must be either a dictionary or a list")
return [dict(items[i:i + chunk_size]) for i in range(0, len(items), chunk_size)]
def airtable_write(json_template):
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Groq inference
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. You will be given a unstructured JSON. I want you to convert it into a fully structured JSON which will become a structured CSV. The headings of the CSV are to be \\\"Category\\\",\\\"Sub-category\\\",\\\"Description\\\" and \\\"User Answer\\\". So shuffle around the fields accordingly. \nFields marked \"Category\" are to be directly picked as the \"Category\" for the CSV. If there is \"Observation type\", then that becomes the Category. \nDONT LEAVE ANY FIELD. MAKE SURE ALL FIELDS ARE INCLUDED IN THE RESULT. DONT OUTPUT ANYTHING OTHER THAN THE JSON. ONLY OUTPUT THE JSON.\n"
},
{
"role": "user",
"content": json_template
}
],
temperature=0.25,
max_tokens=8000,
top_p=1,
stream=True,
# response_format={"type": "json_object"},
stop=None,
)
content=""
for chunk in completion:
content+=chunk.choices[0].delta.content or ""
# Get the structured JSON from Groq
groq_json = json.loads(content)
with open("groq_json.json", "w") as file:
json.dump(groq_json, file, indent=4)
API_KEY = os.getenv("AIRTABLE_KEY")
BASE_ID = 'appcl0egQeE4pP5ID'
TABLE_ID = 'tbl2AaOSxyBv6ObR5'
url = f'https://api.airtable.com/v0/{BASE_ID}/{TABLE_ID}'
headers = {
'Authorization': f'Bearer {API_KEY}',
'Content-Type': 'application/json'
}
# Chunk the data into batches of 10
def chunk_data(data, chunk_size=10):
for i in range(0, len(data), chunk_size):
yield data[i:i + chunk_size]
# Process each chunk and send it to Airtable
for batch in chunk_data(groq_json):
# Format the current batch for Airtable API
airtable_data = {
"records": [
{
"fields": {
"Category": item["Category"],
"Sub-category": item["Sub-category"],
"Description": item["Description"],
"User Answer": item["User Answer"]
}
} for item in batch
]
}
# Make the POST request to add records
response = requests.post(url, headers=headers, data=json.dumps(airtable_data))
# Check if the request was successful
if response.status_code == 200:
print(f"Batch of {len(batch)} records added successfully!")
else:
print(f"Failed to add batch. Status code: {response.status_code}, Error: {response.text}")
def main():
st.title("Qualitas Sales Data Collection Chatbot")
st.caption("Welcome to the Qualitas Bot. First upload a PDF document which should be customer correspondence, detailing some requirements. Also sometimes the Submit button for the questions is a bit sticky. So You might have to click it twice!")
# Initialize session state variables
init_session_state()
# File uploader for the PDF
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
if uploaded_file is not None and not st.session_state.file_processed:
st.write("Processing your document...")
process_document(uploaded_file)
# Display the first question immediately after processing the document
show_question()
# Simulate chat interaction
chat_interaction()
def init_session_state():
if "file_processed" not in st.session_state:
st.session_state.file_processed = False
if "questionnaire_started" not in st.session_state:
st.session_state.questionnaire_started = False
if "current_question_index" not in st.session_state:
st.session_state.current_question_index = 0
if "messages" not in st.session_state:
st.session_state.messages = []
if "questions" not in st.session_state:
st.session_state.questions = []
if "questionnaire_complete" not in st.session_state:
st.session_state.questionnaire_complete = False
def process_document(uploaded_file):
# Simulate file processing (replace with actual logic)
st.session_state.text = extract_text_from_pdf(uploaded_file)
st.session_state.classification_result = classification_LLM(st.session_state.text)
json_path='observationsJSON.json'
with open(json_path, 'r') as file:
obs_json_template = json.load(file)
final_obs_json = obsjsoncreate(obs_json_template, st.session_state.classification_result, st.session_state.text)
st.session_state.obs = final_obs_json
json_path='BizObjJSON.json'
with open(json_path, 'r') as file:
bizobj_json_template = json.load(file)
final_bizobj_json = bizobjjsoncreate(bizobj_json_template, st.session_state.text)
st.session_state.bizobj = final_bizobj_json
questionobs = question_create(final_obs_json)
questionbizobj = question_create(final_bizobj_json)
while True:
try:
# Attempt to evaluate the expressions and assign them to session state
st.session_state.questions = ast.literal_eval(questionbizobj) + ast.literal_eval(questionobs)
# If successful, break out of the loop
break
except Exception as e:
# Print the error for debugging purposes (optional)
print(f"An error occurred: {e}")
# Wait for 1 second before trying again
time.sleep(1)
continue
st.write(st.session_state.questions)
# Mark file as processed
st.session_state.file_processed = True
st.success("Document processed successfully.")
def chat_interaction():
# Display chat messages from history in the correct order
for message in st.session_state.messages[::-1]:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("What is your question?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Process the user's input and show the next question
show_question()
def show_question():
if st.session_state.current_question_index < len(st.session_state.questions):
# Display the next question
with st.chat_message("assistant"):
st.markdown(st.session_state.questions[st.session_state.current_question_index])
# Add the question to the chat history
st.session_state.messages.append({"role": "assistant", "content": st.session_state.questions[st.session_state.current_question_index]})
# Move to the next question
st.session_state.current_question_index += 1
# Check if all questions have been answered
if st.session_state.current_question_index >= len(st.session_state.questions):
st.session_state.questionnaire_complete = True
else:
# Display the answers after completing the questionnaire
answers = [message["content"] for message in st.session_state.messages if message["role"] == "user"]
# with st.chat_message("assistant"):
# st.subheader("Answers")
# st.write(answers)
completed_json = answer_refill(st.session_state.questions, answers, st.session_state.obs, st.session_state.bizobj)
# st.write(completed_json)
airtable_write(completed_json)
exec_summ = executive_summary(completed_json)
st.write(exec_summ)
if __name__ == "__main__":
main() |