File size: 3,085 Bytes
139fd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Import the libraries

import os
import uuid
import joblib
importjson

import gradio as gr
import pandas as pd

from huggingface_hub import CommitScheduler
from pathlib import Path

# Run the training script placed in the same directory as app.py
# The training script will train and persist a linear regression
# model with the filename 'model.joblib'

os.system("python train.py")



# Load the freshly trained model from disk

Insurance_charge_predictor = joblib.load('model.joblib')

# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="-----------",  # provide a name "insurance-charge-mlops-logs" for the repo_id
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
# the functions runs when 'Submit' is clicked or when a API request is made
def predict_insurance_charge(age,sex,bmi,children,smoker,region):
    sample = {
    'age':age,
    'bmi':bmi,
    'children':children,
    'sex':sex,
    'smoker':smoker,
    'region':region
    }
    
    data_point = pd.DataFrame([sample])
    prediction = insurance_charge_predictor(data_point).tolist()

    # While the prediction is made, log both the inputs and outputs to a  log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'age': age,
                    'bmi': bmi,
                    'children': children,
                    'sex': sex,
                    'smoker': smoker,
                    'region': region,
                    'prediction': prediction[0]
                }
            ))
            f.write("\n")

    return prediction[0]



# Set up UI components for input and output

age_input = gr.Number(label='age')
bmi_input = gr.Number(label='bmi')
children_input = gr.Number(label='children')
sex_ipnut = gr.Dropdown(['male','female'],label='sex')
smoker_input = gr.Dropdown(['yes','no'],label='smoker')
region_input = gr.Dropdown(
    ['southeast','southwest','northwest','northeast'],
    lable='region'
)

model_output = gr.label(label="Insurace Charges")

# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"

demo = gr.interface(
    fn=predict_insurance_charge,
    inputs=[age_input,bmi_input,children_input,sex_input,smoker_input,region_input],
    output=model_output,
    title="HealthyLife Insurance Charge Prediction",
    description="This API allows you to predict the estimating insurnace charges based on customer attributes",
    examples=[[33,33.44,5,'male','no','southeast'],
              [58,25.177,0,'male','no','northeast'],
              [52,38.380,2,'female','no','northeast']],
    concurrency_limit=16
)


# Launch with a load balancer
demo.queue()
demo.launch(share=False)