Spaces:
Running
Running
File size: 4,330 Bytes
79da123 7eb6bf3 79da123 59f4573 d861115 79da123 81cb0d6 79da123 c5d1f99 79da123 7eb6bf3 79da123 2580b48 d8b7993 79da123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
"""A Simple chatbot that uses the LangChain and Gradio UI to answer questions about wandb documentation."""
import os
from types import SimpleNamespace
import gradio as gr
import wandb
from chain import get_answer, load_chain, load_vector_store
from config import default_config
class Chat:
"""A chatbot interface that persists the vectorstore and chain between calls."""
def __init__(
self,
config: SimpleNamespace,
):
"""Initialize the chatbot.
Args:
config (SimpleNamespace): The configuration.
"""
self.config = config
wandb_key = os.environ["WANDB_KEY"]
wandb.login(key=wandb_key)
##wandb.login(key="a03aXXXXXXXXXXXX94169985957d")
self.wandb_run = wandb.init(
project=self.config.project,
entity=self.config.entity,
job_type=self.config.job_type,
config=self.config,
settings=wandb.Settings(start_method="thread")
)
self.vector_store = None
self.chain = None
def __call__(
self,
question: str,
history: list[tuple[str, str]] | None = None,
openai_api_key: str = None,
):
"""Answer a question about MASSA documentation using the LangChain QA chain and vector store retriever.
Args:
question (str): The question to answer.
history (list[tuple[str, str]] | None, optional): The chat history. Defaults to None.
openai_api_key (str, optional): The OpenAI API key. Defaults to None.
Returns:
list[tuple[str, str]], list[tuple[str, str]]: The chat history before and after the question is answered.
"""
if openai_api_key is not None:
openai_key = openai_api_key
elif os.environ["OPENAI_API_KEY"]:
openai_key = os.environ["OPENAI_API_KEY"]
else:
raise ValueError(
"Please provide your OpenAI API key as an argument or set the OPENAI_API_KEY environment variable"
)
if self.vector_store is None:
self.vector_store = load_vector_store(
wandb_run=self.wandb_run, openai_api_key=openai_key
)
if self.chain is None:
self.chain = load_chain(
self.wandb_run, self.vector_store, openai_api_key=openai_key
)
history = history or []
question = question.lower()
response = get_answer(
chain=self.chain,
question=question,
chat_history=history,
)
history.append((question, response))
return history, history
with gr.Blocks() as demo:
gr.HTML(
"""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Massa QandA Bot , Massa blockchain is live since 15th of January 2024 !!!
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Hi, I'm a massa documentaion Q and A bot, start by typing in your OpenAI API key, questions/issues you have related to massa usage and then press enter.<br>
Built using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio Github repo</a>
</p>
</div>"""
)
with gr.Row():
question = gr.Textbox(
label="Type in your questions about massa net here and press Enter!",
placeholder="How do I write smart contract with massa ?",
)
openai_api_key = gr.Textbox(
type="password",
label="Enter your OpenAI API key here",
)
state = gr.State()
chatbot = gr.Chatbot()
question.submit(
Chat(
config=default_config,
),
[question, state, openai_api_key],
[chatbot, state],
)
if __name__ == "__main__":
demo.queue().launch(
share=False, show_error=True
# share=False, server_name="0.0.0.0", server_port=8884, show_error=True
)
|