Spaces:
Sleeping
Sleeping
File size: 7,454 Bytes
44d1f22 73f5b3d 44d1f22 a294b9c 73f5b3d a294b9c 44d1f22 a294b9c 44d1f22 a294b9c 44d1f22 a294b9c 44d1f22 a294b9c 44d1f22 a294b9c 73f5b3d 44d1f22 73f5b3d 44d1f22 73f5b3d a294b9c 73f5b3d 44d1f22 73f5b3d 44d1f22 73f5b3d 44d1f22 a294b9c 73f5b3d 44d1f22 a294b9c 73f5b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from __future__ import annotations
import os
from typing import Generator
import gradio as gr
from litellm import completion
from litellm import model_list
from litellm.utils import get_valid_models
# Create static directory if it doesn't exist
os.makedirs("static", exist_ok=True)
def get_available_models(
provider: str,
api_key: str | None = None,
) -> list[str]:
"""Get available models from LiteLLM for the specified provider"""
try:
if api_key:
os.environ[f"{provider.upper()}_API_KEY"] = api_key
try:
# Try to get models from API
models = model_list(provider)
return [model["id"] for model in models]
except Exception:
# Fallback to LiteLLM's valid models for the provider
valid_models = get_valid_models()
provider_models = [
model.split("/")[-1] if "/" in model else model
for model in valid_models
if model.startswith(f"{provider}/") or model.startswith(provider)
]
return provider_models if provider_models else ["gpt-3.5-turbo"]
return ["gpt-3.5-turbo"] # Default fallback
except Exception as e:
print(f"Error fetching models: {e!s}")
return ["gpt-3.5-turbo"] # Fallback on error
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
provider: str,
model: str,
api_key: str,
) -> Generator[str, None, None]:
"""Generate chat responses using the specified model and provider"""
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
# Set API key if provided
if api_key:
os.environ[f"{provider.upper()}_API_KEY"] = api_key
try:
# Construct full model name if needed
model_name = model if "/" in model else f"{provider}/{model}"
for chunk in completion(
model=model_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
):
token = chunk.choices[0].delta.content
if token:
response += token
yield response
except Exception as e:
yield f"Error: {e!s}"
def update_model_list(provider: str, api_key: str) -> gr.Dropdown:
"""Update the model dropdown based on provider and API key"""
models = get_available_models(provider, api_key)
return gr.Dropdown(choices=models, value=models[0] if models else None)
def clear_click() -> None:
"""Clear the chat history"""
return None
def clear_input() -> str:
"""Clear the input textbox"""
return ""
# Get available providers from LiteLLM
valid_models = get_valid_models()
providers = sorted({model.split("/")[0] for model in valid_models if "/" in model})
# Create the chat interface with enhanced styling
with gr.Blocks(
css="static/styles.css",
title="AI Chat Assistant",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
),
) as demo:
with gr.Column(elem_classes="chat-container"):
chatbot = gr.Chatbot(
label="Chat History",
bubble_full_width=False,
show_label=False,
elem_classes=["chat-history"],
height=500,
)
msg = gr.Textbox(
label="Type your message",
placeholder="Enter your message here...",
show_label=False,
container=False,
scale=8,
)
with gr.Row():
submit = gr.Button("Send", variant="primary", scale=1)
clear = gr.Button("Clear", variant="secondary", scale=1)
with gr.Accordion("Model Settings", open=True, elem_classes="additional-inputs"):
with gr.Row():
provider = gr.Dropdown(
choices=providers,
value=providers[0] if providers else "openai",
label="Provider",
info="Select the AI provider",
)
api_key = gr.Textbox(
value="",
label="API Key",
info="Enter your API key",
type="password",
)
model = gr.Dropdown(
choices=get_available_models(providers[0] if providers else "openai"),
value="gpt-3.5-turbo",
label="Model",
info="Select the model to use",
)
# Update model list when provider or API key changes
provider.change(
update_model_list,
inputs=[provider, api_key],
outputs=model,
)
api_key.change(
update_model_list,
inputs=[provider, api_key],
outputs=model,
)
with gr.Accordion("Chat Settings", open=False, elem_classes="additional-inputs"):
system_message = gr.Textbox(
value="You are a friendly and helpful AI assistant.",
label="System Message",
info="Set the AI's personality and behavior",
)
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values make responses more creative but less focused",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
info="Controls response diversity",
)
with gr.Column():
max_tokens = gr.Slider(
minimum=1,
maximum=327670,
value=512,
step=1,
label="Max Tokens",
info="Maximum length of the response",
)
# Set up chat functionality
msg_submit_trigger = msg.submit(
respond,
[msg, chatbot, system_message, max_tokens, temperature, top_p, provider, model, api_key],
[chatbot],
api_name="chat",
)
submit_click_trigger = submit.click(
respond,
[msg, chatbot, system_message, max_tokens, temperature, top_p, provider, model, api_key],
[chatbot],
api_name="chat",
)
clear.click(clear_click, None, chatbot, queue=False)
# Clear input after sending
msg_submit_trigger.then(clear_input, None, msg)
submit_click_trigger.then(clear_input, None, msg)
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_api=False,
favicon_path="🤖",
allowed_paths=["static"],
)
|