File size: 15,226 Bytes
6a5b1b2
 
 
838a1f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5b1b2
838a1f4
 
 
 
503ee53
838a1f4
6a5b1b2
838a1f4
 
 
 
 
 
 
 
 
 
 
 
6a5b1b2
838a1f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5b1b2
 
838a1f4
6a5b1b2
 
 
 
 
 
 
838a1f4
 
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
10cfb94
 
838a1f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5b1b2
838a1f4
6a5b1b2
838a1f4
 
6a5b1b2
838a1f4
 
 
 
 
 
 
 
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7332b87
0b54294
 
7332b87
6a5b1b2
 
7332b87
6a5b1b2
 
 
fec5ddb
6a5b1b2
 
 
fec5ddb
6a5b1b2
 
 
fec5ddb
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
6a5b1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838a1f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import cProfile
import pstats
import io
import gc
import random
import time
import gradio as gr
import spaces
import imageio
from huggingface_hub import HfApi
import torch
from PIL import Image
from diffusers import (
    ControlNetModel,
    DPMSolverMultistepScheduler,
    StableDiffusionControlNetPipeline,
)
from preprocess_anime import Preprocessor, conditionally_manage_memory
from settings import API_KEY, MAX_NUM_IMAGES, MAX_SEED

preprocessor = None
controlnet = None
scheduler = None
pipe = None
compiled = False
api = HfApi()

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_additional_prompt():
    prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
    bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
    accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
    return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
    # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]

def get_prompt(prompt, additional_prompt):
    default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    randomize = get_additional_prompt()
    nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
    lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
    pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
    bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
    ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
    ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
    athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
    atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
    maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
    nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
    naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
    abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
    shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
        
    if prompt == "":
        prompts = [randomize, nude, bodypaint, pet_play, bondage, ahegao2, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari]
        prompts_nsfw = [nude, bodypaint, abg, ahegao2, shibari]
        preset = random.choice(prompts)
        prompt = f"{preset}"
        # print(f"-------------{preset}-------------")
    else:
        # prompt = f"{prompt}, {randomize}"
        prompt = f"{default},{prompt}"
    print(f"{prompt}")
    return prompt

def initialize_models():
    global preprocessor, controlnet, scheduler, pipe
    if preprocessor is None:
        preprocessor = Preprocessor()

    if controlnet is None:
        model_id = "lllyasviel/control_v11p_sd15_normalbae"
        print("initializing controlnet")
        controlnet = ControlNetModel.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            attn_implementation="flash_attention_2",
        ).to("cuda")

    if scheduler is None:
        scheduler = DPMSolverMultistepScheduler.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            solver_order=2,
            subfolder="scheduler",
            use_karras_sigmas=True,
            final_sigmas_type="sigma_min",
            algorithm_type="sde-dpmsolver++",
            prediction_type="epsilon",
            thresholding=False,
            denoise_final=True,
            device_map="cuda",
        )

    if pipe is None:
        base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
        pipe = StableDiffusionControlNetPipeline.from_single_file(
            base_model_url,
            safety_checker=None,
            controlnet=controlnet,
            scheduler=scheduler,
            torch_dtype=torch.float16,
        )
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
        pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
        pipe.to("cuda")
        print("---------------Loaded controlnet pipeline---------------")

@spaces.GPU(duration=11)
@torch.inference_mode()
def process_image(
    image,
    prompt,
    a_prompt,
    n_prompt,
    num_images,
    image_resolution,
    preprocess_resolution,
    num_steps,
    guidance_scale,
    seed,
):
    initialize_models()
    preprocessor.load("NormalBae")
    control_image = preprocessor(
        image=image,
        image_resolution=image_resolution,
        detect_resolution=preprocess_resolution,
    )
    custom_prompt = str(get_prompt(prompt, a_prompt))
    negative_prompt = str(n_prompt)
    global compiled
    generator = torch.cuda.manual_seed(seed)
    if not compiled:
        print("-----------------------------------Not Compiled-----------------------------------")
        compiled = True
    start = time.time()
    results = pipe(
        prompt=custom_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images,
        num_inference_steps=num_steps,
        generator=generator,
        image=control_image,
    ).images[0]
    print(f"Inference done in: {time.time() - start:.2f} seconds")
    
    timestamp = int(time.time())
    img_path = f"{timestamp}.jpg"
    results_path = f"{timestamp}_out.jpg"
    imageio.imsave(img_path, image)
    results.save(results_path)
    
    api.upload_file(
        path_or_fileobj=img_path,
        path_in_repo=img_path,
        repo_id="broyang/anime-ai-outputs",
        repo_type="dataset",
        token=API_KEY,
        run_as_future=True,
    )
    api.upload_file(
        path_or_fileobj=results_path,
        path_in_repo=results_path,
        repo_id="broyang/anime-ai-outputs",
        repo_type="dataset",
        token=API_KEY,
        run_as_future=True,
    )

    conditionally_manage_memory()

    results.save("temp_image.png")
    return results

def main():
    prod = True
    show_options = True
    if prod:
        show_options = False

    print("CUDA version:", torch.version.cuda)
    print("loading pipe")

    css = """
    h1 {
        text-align: center;
        display:block;
    }
    h2 {
        text-align: center;
        display:block;
    }
    h3 {
        text-align: center;
        display:block;
    }
    footer {visibility: hidden}
    """
    with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
        with gr.Row():
            with gr.Accordion("Advanced options", open=show_options, visible=show_options):
                num_images = gr.Slider(
                    label="Images", minimum=1, maximum=MAX_NUM_IMAGES, value=1, step=1
                )
                image_resolution = gr.Slider(
                    label="Image resolution",
                    minimum=256,
                    maximum=1024,
                    value=768,
                    step=256,
                )
                preprocess_resolution = gr.Slider(
                    label="Preprocess resolution",
                    minimum=128,
                    maximum=1024,
                    value=768,
                    step=1,
                )
                num_steps = gr.Slider(
                    label="Number of steps", minimum=1, maximum=100, value=12, step=1
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
                )
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                a_prompt = gr.Textbox(
                    label="Additional prompt",
                    value = ""
                )
                n_prompt = gr.Textbox(
                    label="Negative prompt",
                    value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
                )
        with gr.Column():
            prompt = gr.Textbox(
                label="Description",
                placeholder="Leave empty for something spicy 👀",
            )
        with gr.Row():
            with gr.Column():
                image = gr.Image(
                    label="Input",
                    sources=["upload"],
                    show_label=True,
                    format="webp",
                )
                with gr.Column():
                    run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
            with gr.Column():
                result = gr.Image(
                    label="Anime AI",
                    interactive=False,
                    format="webp",
                    visible = True,
                    show_share_button= False,
                )
                with gr.Column():
                    use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
        config = [
            image,
            prompt,
            a_prompt,
            n_prompt,
            num_images,
            image_resolution,
            preprocess_resolution,
            num_steps,
            guidance_scale,
            seed,
        ]
        
        @spaces.GPU(duration=11)
        @torch.inference_mode()
        @gr.on(triggers=[image.upload], inputs=config, outputs=[result])
        def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed):
            return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
    
        @gr.on(triggers=[image.upload], inputs=None, outputs=[use_ai_button, run_button])
        def turn_buttons_off():
            return gr.update(visible=False), gr.update(visible=False)
    
        @gr.on(triggers=[use_ai_button.click], inputs=None, outputs=[use_ai_button, run_button])
        def turn_buttons_off():
            return gr.update(visible=False), gr.update(visible=False)
    
        @gr.on(triggers=[run_button.click], inputs=None, outputs=[use_ai_button, run_button])
        def turn_buttons_off():
            return gr.update(visible=False), gr.update(visible=False)
    
        @gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button])
        def turn_buttons_on():
            return gr.update(visible=True), gr.update(visible=True)
        
        with gr.Row():
            helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
            
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
            show_progress="none",
        ).then(
            fn=auto_process_image,
            inputs=config,
            outputs=result,
            api_name=False,
            show_progress="minimal",
        )

        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
            show_progress="none",
        ).then(
            fn=auto_process_image,
            inputs=config,
            outputs=result,
            show_progress="minimal",
        )

        def update_config():
            try:
                print("Updating image to AI Temp Image")
                ai_temp_image = Image.open("temp_image.png")
                return ai_temp_image
            except FileNotFoundError:
                print("No AI Image Available")
                return None
        
        use_ai_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
            show_progress="none",
        ).then(
            fn=lambda _: update_config(),
            inputs=[image],
            outputs=image,
            show_progress="minimal",
        ).then(
            fn=auto_process_image,
            inputs=[image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed],
            outputs=result,
            show_progress="minimal",
        )

    demo.launch()

if __name__ == "__main__":
    pr = cProfile.Profile()
    pr.enable()
    main()
    pr.disable()

    s = io.StringIO()
    sortby = 'cumulative'
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()
    print(s.getvalue())