File size: 17,545 Bytes
a6b26e3
 
f83c2c0
 
a6b26e3
f83c2c0
 
 
a6b26e3
 
f83c2c0
 
a6b26e3
f83c2c0
 
a6b26e3
 
 
 
 
 
 
 
f83c2c0
 
 
 
 
 
 
 
a6b26e3
f83c2c0
 
 
a6b26e3
 
 
 
 
f83c2c0
 
 
 
 
 
a6b26e3
 
 
 
 
 
 
f83c2c0
 
 
 
 
 
 
a6b26e3
 
f83c2c0
a6b26e3
 
 
f83c2c0
 
 
 
 
 
 
 
 
 
a6b26e3
 
 
 
f83c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b26e3
 
f83c2c0
 
 
 
 
 
a6b26e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83c2c0
 
a6b26e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83c2c0
 
 
 
 
 
 
 
 
 
a6b26e3
 
 
f83c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b26e3
f83c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b26e3
 
 
 
f83c2c0
 
a6b26e3
 
f83c2c0
 
 
a6b26e3
f83c2c0
 
 
 
a6b26e3
 
 
 
 
 
 
f83c2c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from base64 import b64encode
from io import BytesIO
from math import ceil

import matplotlib.pyplot as plt
from multilingual_clip import pt_multilingual_clip
import numpy as np
import pandas as pd
from PIL import Image
import requests
import streamlit as st
import torch
from torchvision.transforms import ToPILImage
from transformers import AutoTokenizer, AutoModel

from CLIP_Explainability.clip_ import load, tokenize
from CLIP_Explainability.vit_cam import (
    interpret_vit,
    vit_perword_relevance,
)  # , interpret_vit_overlapped

MAX_IMG_WIDTH = 450  # For small dialog
MAX_IMG_HEIGHT = 800

st.set_page_config(layout="wide")


def init():
    st.session_state.current_page = 1

    device = "cuda" if torch.cuda.is_available() else "cpu"
    st.session_state.device = device

    # Load the open CLIP models
    ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
    ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"

    st.session_state.ml_image_model, st.session_state.ml_image_preprocess = load(
        ml_model_path, device=device, jit=False
    )

    st.session_state.ml_model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(
        ml_model_name
    )
    st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)

    ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
    ja_model_path = "./models/ViT-H-14-laion2B-s32B-b79K.bin"

    st.session_state.ja_image_model, st.session_state.ja_image_preprocess = load(
        ja_model_path, device=device, jit=False
    )

    st.session_state.ja_model = AutoModel.from_pretrained(
        ja_model_name, trust_remote_code=True
    ).to(device)
    st.session_state.ja_tokenizer = AutoTokenizer.from_pretrained(
        ja_model_name, trust_remote_code=True
    )

    st.session_state.active_model = "M-CLIP (multiple languages)"

    st.session_state.search_image_ids = []
    st.session_state.search_image_scores = {}
    st.session_state.activations_image = None
    st.session_state.text_table_df = None

    # Load the image IDs
    st.session_state.images_info = pd.read_csv("./metadata.csv")
    st.session_state.images_info.set_index("filename", inplace=True)

    st.session_state.image_ids = list(
        open("./images_list.txt", "r", encoding="utf-8").read().strip().split("\n")
    )

    # Load the image feature vectors
    # ml_image_features = np.load("./multilingual_features.npy")
    # ja_image_features = np.load("./hakuhodo_features.npy")
    ml_image_features = np.load("./resized_ml_features.npy")
    ja_image_features = np.load("./resized_ja_features.npy")

    # Convert features to Tensors: Float32 on CPU and Float16 on GPU
    if device == "cpu":
        ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
        ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
    else:
        ml_image_features = torch.from_numpy(ml_image_features).to(device)
        ja_image_features = torch.from_numpy(ja_image_features).to(device)

    st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
        dim=-1, keepdim=True
    )
    st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
        dim=-1, keepdim=True
    )


if (
    "ml_image_features" not in st.session_state
    or "ja_image_features" not in st.session_state
):
    with st.spinner("Loading models and data, please wait..."):
        init()


# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
def encode_search_query(search_query, model_type):
    with torch.no_grad():
        # Encode and normalize the search query using the multilingual model
        if model_type == "M-CLIP (multiple languages)":
            text_encoded = st.session_state.ml_model.forward(
                search_query, st.session_state.ml_tokenizer
            )
            text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
        else:  # model_type == "J-CLIP (日本語 only)"
            t_text = st.session_state.ja_tokenizer(
                search_query, padding=True, return_tensors="pt"
            )
            text_encoded = st.session_state.ja_model.get_text_features(**t_text)
            text_encoded /= text_encoded.norm(dim=-1, keepdim=True)

    # Retrieve the feature vector
    return text_encoded


# The `find_best_matches` function compares the text feature vector to the feature vectors of all images and finds the best matches. The function returns the IDs of the best matching images.
def find_best_matches(text_features, image_features, image_ids):
    # Compute the similarity between the search query and each image using the Cosine similarity
    similarities = (image_features @ text_features.T).squeeze(1)

    # Sort the images by their similarity score
    best_image_idx = (-similarities).argsort()

    # Return the image IDs of the best matches
    return [[image_ids[i], similarities[i].item()] for i in best_image_idx]


def clip_search(search_query):
    if st.session_state.search_field_value != search_query:
        st.session_state.search_field_value = search_query

    model_type = st.session_state.active_model

    if len(search_query) >= 1:
        text_features = encode_search_query(search_query, model_type)

        # Compute the similarity between the descrption and each photo using the Cosine similarity
        # similarities = list((text_features @ photo_features.T).squeeze(0))

        # Sort the photos by their similarity score
        if model_type == "M-CLIP (multiple languages)":
            matches = find_best_matches(
                text_features,
                st.session_state.ml_image_features,
                st.session_state.image_ids,
            )
        else:  # model_type == "J-CLIP (日本語 only)"
            matches = find_best_matches(
                text_features,
                st.session_state.ja_image_features,
                st.session_state.image_ids,
            )

        st.session_state.search_image_ids = [match[0] for match in matches]
        st.session_state.search_image_scores = {match[0]: match[1] for match in matches}


def string_search():
    clip_search(st.session_state.search_field_value)


def visualize_gradcam(viz_image_id):
    if not st.session_state.search_field_value:
        return

    header_cols = st.columns([80, 20], vertical_alignment="bottom")
    with header_cols[0]:
        st.title("Image + query details")
    with header_cols[1]:
        if st.button("Close"):
            st.rerun()

    st.markdown(
        f"**Query text:** {st.session_state.search_field_value} | **Image relevance:** {round(st.session_state.search_image_scores[viz_image_id], 3)}"
    )

    # with st.spinner("Calculating..."):
    info_text = st.text("Calculating activation regions...")

    image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
    image_response = requests.get(image_url)
    image = Image.open(BytesIO(image_response.content), formats=["JPEG"])

    img_dim = 224
    if st.session_state.active_model == "M-CLIP (multiple languages)":
        img_dim = 240

    orig_img_dims = image.size

    altered_image = image.resize((img_dim, img_dim), Image.LANCZOS)

    if st.session_state.active_model == "M-CLIP (multiple languages)":
        p_image = (
            st.session_state.ml_image_preprocess(altered_image)
            .unsqueeze(0)
            .to(st.session_state.device)
        )

        # Sometimes used for token importance viz
        tokenized_text = st.session_state.ml_tokenizer.tokenize(
            st.session_state.search_field_value
        )
        image_model = st.session_state.ml_image_model
        # tokenize = st.session_state.ml_tokenizer.tokenize

        text_features = st.session_state.ml_model.forward(
            st.session_state.search_field_value, st.session_state.ml_tokenizer
        )

        vis_t = interpret_vit(
            p_image.type(st.session_state.ml_image_model.dtype),
            text_features,
            st.session_state.ml_image_model.visual,
            st.session_state.device,
            img_dim=img_dim,
        )

    else:
        p_image = (
            st.session_state.ja_image_preprocess(altered_image)
            .unsqueeze(0)
            .to(st.session_state.device)
        )

        # Sometimes used for token importance viz
        tokenized_text = st.session_state.ja_tokenizer.tokenize(
            st.session_state.search_field_value
        )
        image_model = st.session_state.ja_image_model

        t_text = st.session_state.ja_tokenizer(
            st.session_state.search_field_value, return_tensors="pt"
        )
        text_features = st.session_state.ja_model.get_text_features(**t_text)

        vis_t = interpret_vit(
            p_image.type(st.session_state.ja_image_model.dtype),
            text_features,
            st.session_state.ja_image_model.visual,
            st.session_state.device,
            img_dim=img_dim,
        )

    transform = ToPILImage()
    vis_img = transform(vis_t)

    if orig_img_dims[0] > orig_img_dims[1]:
        scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
        scaled_dims = [MAX_IMG_WIDTH, int(orig_img_dims[1] * scale_factor)]
    else:
        scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
        scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]

    st.session_state.activations_image = vis_img.resize(scaled_dims)

    image_io = BytesIO()
    st.session_state.activations_image.save(image_io, "PNG")
    dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")

    st.html(
        f"""<div style="display: flex; flex-direction: column; align-items: center">
                <img src="{dataurl}" />
            </div>"""
    )

    info_text.empty()

    tokenized_text = [tok for tok in tokenized_text if tok != "▁"]

    if (
        len(tokenized_text) > 1
        and len(tokenized_text) < 15
        and st.button(
            "Calculate text importance (may take some time)",
        )
    ):
        search_tokens = []
        token_scores = []

        progress_text = f"Processing {len(tokenized_text)} text tokens"
        progress_bar = st.progress(0.0, text=progress_text)

        for t, tok in enumerate(tokenized_text):
            token = tok.replace("▁", "")
            word_rel = vit_perword_relevance(
                p_image,
                st.session_state.search_field_value,
                image_model,
                tokenize,
                st.session_state.device,
                token,
                data_only=True,
                img_dim=img_dim,
            )
            avg_score = np.mean(word_rel)
            if avg_score == 0 or np.isnan(avg_score):
                continue
            search_tokens.append(token)
            token_scores.append(1 / avg_score)

            progress_bar.progress(
                (t + 1) / len(tokenized_text),
                text=f"Processing token {t+1} of {len(tokenized_text)} tokens",
            )
        progress_bar.empty()

        normed_scores = torch.softmax(torch.tensor(token_scores), dim=0)

        token_scores = [f"{round(score.item() * 100, 3)}%" for score in normed_scores]
        st.session_state.text_table_df = pd.DataFrame(
            {"token": search_tokens, "importance": token_scores}
        )

        st.markdown("**Importance of each text token to relevance score**")
        st.table(st.session_state.text_table_df)


@st.dialog(" ", width="small")
def image_modal(vis_image_id):
    visualize_gradcam(vis_image_id)


st.title("Explore Japanese visual aesthetics with CLIP models")

st.markdown(
    """
    <style>
    [data-testid=stImageCaption] {
        padding: 0 0 0 0;
    }
    [data-testid=stVerticalBlockBorderWrapper] {
        line-height: 1.2;
    }
    [data-testid=stVerticalBlock] {
        gap: .75rem;
    }
    [data-testid=baseButton-secondary] {
        min-height: 1rem;
        padding: 0 0.75rem;
        margin: 0 0 1rem 0;
    }
    div[aria-label="dialog"]>button[aria-label="Close"] {
        display: none;
    }
    [data-testid=stFullScreenFrame] {
        display: flex;
        flex-direction: column;
        align-items: center;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

search_row = st.columns([45, 10, 13, 7, 25], vertical_alignment="center")
with search_row[0]:
    search_field = st.text_input(
        label="search",
        label_visibility="collapsed",
        placeholder="Type something, or click a suggested search below.",
        on_change=string_search,
        key="search_field_value",
    )
with search_row[1]:
    st.button(
        "Search", on_click=string_search, use_container_width=True, type="primary"
    )
with search_row[2]:
    st.empty()
with search_row[3]:
    st.markdown("**CLIP Model:**")
with search_row[4]:
    st.radio(
        "CLIP Model",
        options=["M-CLIP (multiple languages)", "J-CLIP (日本語 only)"],
        key="active_model",
        on_change=string_search,
        horizontal=True,
        label_visibility="collapsed",
    )

canned_searches = st.columns([12, 22, 22, 22, 22], vertical_alignment="top")
with canned_searches[0]:
    st.markdown("**Suggested searches:**")
if st.session_state.active_model == "M-CLIP (multiple languages)":
    with canned_searches[1]:
        st.button(
            "negative space",
            on_click=clip_search,
            args=["negative space"],
            use_container_width=True,
        )
    with canned_searches[2]:
        st.button("間", on_click=clip_search, args=["間"], use_container_width=True)
    with canned_searches[3]:
        st.button("음각", on_click=clip_search, args=["음각"], use_container_width=True)
    with canned_searches[4]:
        st.button(
            "αρνητικός χώρος",
            on_click=clip_search,
            args=["αρνητικός χώρος"],
            use_container_width=True,
        )
else:
    with canned_searches[1]:
        st.button(
            "間",
            on_click=clip_search,
            args=["間"],
            use_container_width=True,
        )
    with canned_searches[2]:
        st.button("奥", on_click=clip_search, args=["奥"], use_container_width=True)
    with canned_searches[3]:
        st.button("山", on_click=clip_search, args=["山"], use_container_width=True)
    with canned_searches[4]:
        st.button(
            "花に酔えり 羽織着て刀 さす女",
            on_click=clip_search,
            args=["花に酔えり 羽織着て刀 さす女"],
            use_container_width=True,
        )

controls = st.columns([35, 5, 35, 5, 20], gap="large", vertical_alignment="center")
with controls[0]:
    im_per_pg = st.columns([30, 70], vertical_alignment="center")
    with im_per_pg[0]:
        st.markdown("**Images/page:**")
    with im_per_pg[1]:
        batch_size = st.select_slider(
            "Images/page:", range(10, 50, 10), label_visibility="collapsed"
        )
with controls[1]:
    st.empty()
with controls[2]:
    im_per_row = st.columns([30, 70], vertical_alignment="center")
    with im_per_row[0]:
        st.markdown("**Images/row:**")
    with im_per_row[1]:
        row_size = st.select_slider(
            "Images/row:", range(1, 6), value=5, label_visibility="collapsed"
        )
num_batches = ceil(len(st.session_state.image_ids) / batch_size)
with controls[3]:
    st.empty()
with controls[4]:
    pager = st.columns([40, 60], vertical_alignment="center")
    with pager[0]:
        st.markdown(f"Page **{st.session_state.current_page}** of **{num_batches}** ")
    with pager[1]:
        st.number_input(
            "Page",
            min_value=1,
            max_value=num_batches,
            step=1,
            label_visibility="collapsed",
            key="current_page",
        )


if len(st.session_state.search_image_ids) == 0:
    batch = []
else:
    batch = st.session_state.search_image_ids[
        (st.session_state.current_page - 1) * batch_size : st.session_state.current_page
        * batch_size
    ]

grid = st.columns(row_size)
col = 0
for image_id in batch:
    with grid[col]:
        link_text = st.session_state.images_info.loc[image_id]["permalink"].split("/")[
            2
        ]
        # st.image(
        #     st.session_state.images_info.loc[image_id]["image_url"],
        #     caption=st.session_state.images_info.loc[image_id]["caption"],
        # )
        st.html(
            f"""<div style="display: flex; flex-direction: column; align-items: center">
                    <img src="{st.session_state.images_info.loc[image_id]['image_url']}" style="max-width: 100%; max-height: {MAX_IMG_HEIGHT}px" />
                    <div>{st.session_state.images_info.loc[image_id]['caption']} <b>[{round(st.session_state.search_image_scores[image_id], 3)}]</b></div>
                </div>"""
        )
        st.caption(
            f"""<div style="display: flex; flex-direction: column; align-items: center; position: relative; top: -12px">
                    <a href="{st.session_state.images_info.loc[image_id]['permalink']}">{link_text}</a>
                <div>""",
            unsafe_allow_html=True,
        )
        st.button(
            "Explain this",
            on_click=image_modal,
            args=[image_id],
            use_container_width=True,
            key=image_id,
        )
    col = (col + 1) % row_size