File size: 22,231 Bytes
a6b26e3 f83c2c0 a6b26e3 f83c2c0 a6b26e3 f83c2c0 a6b26e3 3adc1a0 a6b26e3 f83c2c0 62d2147 aeb9d29 62d2147 3adc1a0 f83c2c0 a6b26e3 f83c2c0 a6b26e3 3adc1a0 f83c2c0 3adc1a0 f83c2c0 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 f83c2c0 3adc1a0 a6b26e3 3adc1a0 f83c2c0 a6b26e3 f83c2c0 3adc1a0 f83c2c0 3adc1a0 f83c2c0 a6b26e3 aeb9d29 a6b26e3 a05a801 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 3adc1a0 a6b26e3 a05a801 a6b26e3 3adc1a0 a6b26e3 f83c2c0 a6b26e3 3adc1a0 f83c2c0 a6b26e3 f83c2c0 3adc1a0 f83c2c0 3adc1a0 f83c2c0 a05a801 f83c2c0 a6b26e3 f83c2c0 a6b26e3 f83c2c0 a6b26e3 f83c2c0 a6b26e3 f83c2c0 a6b26e3 f83c2c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
from base64 import b64encode
from io import BytesIO
from math import ceil
from multilingual_clip import pt_multilingual_clip
import numpy as np
import pandas as pd
from PIL import Image
import requests
import streamlit as st
import torch
from torchvision.transforms import ToPILImage
from transformers import AutoTokenizer, AutoModel
from CLIP_Explainability.clip_ import load, tokenize
from CLIP_Explainability.vit_cam import (
interpret_vit,
vit_perword_relevance,
) # , interpret_vit_overlapped
MAX_IMG_WIDTH = 500
MAX_IMG_HEIGHT = 800
st.set_page_config(layout="wide")
# The `find_best_matches` function compares the text feature vector to the feature vectors of all images and finds the best matches. The function returns the IDs of the best matching images.
def find_best_matches(text_features, image_features, image_ids):
# Compute the similarity between the search query and each image using the Cosine similarity
similarities = (image_features @ text_features.T).squeeze(1)
# Sort the images by their similarity score
best_image_idx = (-similarities).argsort()
# Return the image IDs of the best matches
return [[image_ids[i], similarities[i].item()] for i in best_image_idx]
# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
def encode_search_query(search_query, model_type):
with torch.no_grad():
# Encode and normalize the search query using the multilingual model
if model_type == "M-CLIP (multiple languages)":
text_encoded = st.session_state.ml_model.forward(
search_query, st.session_state.ml_tokenizer
)
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
else: # model_type == "J-CLIP (日本語 only)"
t_text = st.session_state.ja_tokenizer(
search_query, padding=True, return_tensors="pt"
)
text_encoded = st.session_state.ja_model.get_text_features(**t_text)
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
# Retrieve the feature vector
return text_encoded
def clip_search(search_query):
if st.session_state.search_field_value != search_query:
st.session_state.search_field_value = search_query
model_type = st.session_state.active_model
if len(search_query) >= 1:
text_features = encode_search_query(search_query, model_type)
# Compute the similarity between the descrption and each photo using the Cosine similarity
# similarities = list((text_features @ photo_features.T).squeeze(0))
# Sort the photos by their similarity score
if model_type == "M-CLIP (multiple languages)":
matches = find_best_matches(
text_features,
st.session_state.ml_image_features,
st.session_state.image_ids,
)
else: # model_type == "J-CLIP (日本語 only)"
matches = find_best_matches(
text_features,
st.session_state.ja_image_features,
st.session_state.image_ids,
)
st.session_state.search_image_ids = [match[0] for match in matches]
st.session_state.search_image_scores = {match[0]: match[1] for match in matches}
def string_search():
if "search_field_value" in st.session_state:
clip_search(st.session_state.search_field_value)
def load_image_features():
# Load the image feature vectors
if st.session_state.vision_mode == "tiled":
ml_image_features = np.load("./image_features/tiled_ml_features.npy")
ja_image_features = np.load("./image_features/tiled_ja_features.npy")
elif st.session_state.vision_mode == "stretched":
ml_image_features = np.load("./image_features/resized_ml_features.npy")
ja_image_features = np.load("./image_features/resized_ja_features.npy")
else: # st.session_state.vision_mode == "cropped":
ml_image_features = np.load("./image_features/cropped_ml_features.npy")
ja_image_features = np.load("./image_features/cropped_ja_features.npy")
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
device = st.session_state.device
if device == "cpu":
ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
else:
ml_image_features = torch.from_numpy(ml_image_features).to(device)
ja_image_features = torch.from_numpy(ja_image_features).to(device)
st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
dim=-1, keepdim=True
)
st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
dim=-1, keepdim=True
)
string_search()
def init():
st.session_state.current_page = 1
device = "cuda" if torch.cuda.is_available() else "cpu"
st.session_state.device = device
# Load the open CLIP models
ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"
with st.spinner("Loading models and data, please wait..."):
st.session_state.ml_image_model, st.session_state.ml_image_preprocess = load(
ml_model_path, device=device, jit=False
)
st.session_state.ml_model = (
pt_multilingual_clip.MultilingualCLIP.from_pretrained(ml_model_name)
)
st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)
ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
ja_model_path = "./models/ViT-H-14-laion2B-s32B-b79K.bin"
st.session_state.ja_image_model, st.session_state.ja_image_preprocess = load(
ja_model_path, device=device, jit=False
)
st.session_state.ja_model = AutoModel.from_pretrained(
ja_model_name, trust_remote_code=True
).to(device)
st.session_state.ja_tokenizer = AutoTokenizer.from_pretrained(
ja_model_name, trust_remote_code=True
)
# Load the image IDs
st.session_state.images_info = pd.read_csv("./metadata.csv")
st.session_state.images_info.set_index("filename", inplace=True)
with open("./images_list.txt", "r", encoding="utf-8") as images_list:
st.session_state.image_ids = list(images_list.read().strip().split("\n"))
st.session_state.active_model = "M-CLIP (multiple languages)"
st.session_state.vision_mode = "tiled"
st.session_state.search_image_ids = []
st.session_state.search_image_scores = {}
st.session_state.activations_image = None
st.session_state.text_table_df = None
with st.spinner("Loading models and data, please wait..."):
load_image_features()
if "images_info" not in st.session_state:
init()
def visualize_gradcam(viz_image_id):
if "search_field_value" not in st.session_state:
return
header_cols = st.columns([80, 20], vertical_alignment="bottom")
with header_cols[0]:
st.title("Image + query details")
with header_cols[1]:
if st.button("Close"):
st.rerun()
st.markdown(
f"**Query text:** {st.session_state.search_field_value} | **Image relevance:** {round(st.session_state.search_image_scores[viz_image_id], 3)}"
)
# with st.spinner("Calculating..."):
info_text = st.text("Calculating activation regions...")
image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF"])
image = image.convert("RGB")
img_dim = 224
if st.session_state.active_model == "M-CLIP (multiple languages)":
img_dim = 240
orig_img_dims = image.size
##### If the features are based on tiled image slices
tile_behavior = None
if st.session_state.vision_mode == "tiled":
scaled_dims = [img_dim, img_dim]
if orig_img_dims[0] > orig_img_dims[1]:
scale_ratio = round(orig_img_dims[0] / orig_img_dims[1])
if scale_ratio > 1:
scaled_dims = [scale_ratio * img_dim, img_dim]
tile_behavior = "width"
elif orig_img_dims[0] < orig_img_dims[1]:
scale_ratio = round(orig_img_dims[1] / orig_img_dims[0])
if scale_ratio > 1:
scaled_dims = [img_dim, scale_ratio * img_dim]
tile_behavior = "height"
resized_image = image.resize(scaled_dims, Image.LANCZOS)
if tile_behavior == "width":
image_tiles = []
for x in range(0, scale_ratio):
box = (x * img_dim, 0, (x + 1) * img_dim, img_dim)
image_tiles.append(resized_image.crop(box))
elif tile_behavior == "height":
image_tiles = []
for y in range(0, scale_ratio):
box = (0, y * img_dim, img_dim, (y + 1) * img_dim)
image_tiles.append(resized_image.crop(box))
else:
image_tiles = [resized_image]
elif st.session_state.vision_mode == "stretched":
image_tiles = [image.resize((img_dim, img_dim), Image.LANCZOS)]
else: # vision_mode == "cropped"
if orig_img_dims[0] > orig_img_dims[1]:
scale_factor = orig_img_dims[0] / orig_img_dims[1]
resized_img_dims = (round(scale_factor * img_dim), img_dim)
resized_img = image.resize(resized_img_dims)
elif orig_img_dims[0] < orig_img_dims[1]:
scale_factor = orig_img_dims[1] / orig_img_dims[0]
resized_img_dims = (img_dim, round(scale_factor * img_dim))
else:
resized_img_dims = (img_dim, img_dim)
resized_img = image.resize(resized_img_dims)
left = round((resized_img_dims[0] - img_dim) / 2)
top = round((resized_img_dims[1] - img_dim) / 2)
x_right = round(resized_img_dims[0] - img_dim) - left
x_bottom = round(resized_img_dims[1] - img_dim) - top
right = resized_img_dims[0] - x_right
bottom = resized_img_dims[1] - x_bottom
# Crop the center of the image
image_tiles = [resized_img.crop((left, top, right, bottom))]
image_visualizations = []
if st.session_state.active_model == "M-CLIP (multiple languages)":
# Sometimes used for token importance viz
tokenized_text = st.session_state.ml_tokenizer.tokenize(
st.session_state.search_field_value
)
text_features = st.session_state.ml_model.forward(
st.session_state.search_field_value, st.session_state.ml_tokenizer
)
image_model = st.session_state.ml_image_model
# tokenize = st.session_state.ml_tokenizer.tokenize
image_model.eval()
for altered_image in image_tiles:
image_model.zero_grad()
p_image = (
st.session_state.ml_image_preprocess(altered_image)
.unsqueeze(0)
.to(st.session_state.device)
)
vis_t = interpret_vit(
p_image.type(st.session_state.ml_image_model.dtype),
text_features,
image_model.visual,
st.session_state.device,
img_dim=img_dim,
)
image_visualizations.append(vis_t)
else:
# Sometimes used for token importance viz
tokenized_text = st.session_state.ja_tokenizer.tokenize(
st.session_state.search_field_value
)
t_text = st.session_state.ja_tokenizer(
st.session_state.search_field_value, return_tensors="pt"
)
text_features = st.session_state.ja_model.get_text_features(**t_text)
image_model = st.session_state.ja_image_model
image_model.eval()
for altered_image in image_tiles:
image_model.zero_grad()
p_image = (
st.session_state.ja_image_preprocess(altered_image)
.unsqueeze(0)
.to(st.session_state.device)
)
vis_t = interpret_vit(
p_image.type(st.session_state.ja_image_model.dtype),
text_features,
image_model.visual,
st.session_state.device,
img_dim=img_dim,
)
image_visualizations.append(vis_t)
transform = ToPILImage()
vis_images = [transform(vis_t) for vis_t in image_visualizations]
if st.session_state.vision_mode == "cropped":
resized_img.paste(vis_images[0], (left, top))
vis_images = [resized_img]
if orig_img_dims[0] > orig_img_dims[1]:
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
scaled_dims = [MAX_IMG_WIDTH, int(orig_img_dims[1] * scale_factor)]
else:
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
if tile_behavior == "width":
vis_image = Image.new("RGB", (len(vis_images) * img_dim, img_dim))
for x, v_img in enumerate(vis_images):
vis_image.paste(v_img, (x * img_dim, 0))
st.session_state.activations_image = vis_image.resize(scaled_dims)
elif tile_behavior == "height":
vis_image = Image.new("RGB", (img_dim, len(vis_images) * img_dim))
for y, v_img in enumerate(vis_images):
vis_image.paste(v_img, (0, y * img_dim))
st.session_state.activations_image = vis_image.resize(scaled_dims)
else:
st.session_state.activations_image = vis_images[0].resize(scaled_dims)
image_io = BytesIO()
st.session_state.activations_image.save(image_io, "PNG")
dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")
st.html(
f"""<div style="display: flex; flex-direction: column; align-items: center;">
<img src="{dataurl}" />
</div>"""
)
info_text.empty()
tokenized_text = [tok for tok in tokenized_text if tok != "▁"]
if (
len(tokenized_text) > 1
and len(tokenized_text) < 15
and st.button(
"Calculate text importance (may take some time)",
)
):
search_tokens = []
token_scores = []
progress_text = f"Processing {len(tokenized_text)} text tokens"
progress_bar = st.progress(0.0, text=progress_text)
for t, tok in enumerate(tokenized_text):
token = tok.replace("▁", "")
word_rel = vit_perword_relevance(
p_image,
st.session_state.search_field_value,
image_model,
tokenize,
st.session_state.device,
token,
data_only=True,
img_dim=img_dim,
)
avg_score = np.mean(word_rel)
if avg_score == 0 or np.isnan(avg_score):
continue
search_tokens.append(token)
token_scores.append(1 / avg_score)
progress_bar.progress(
(t + 1) / len(tokenized_text),
text=f"Processing token {t+1} of {len(tokenized_text)}",
)
progress_bar.empty()
normed_scores = torch.softmax(torch.tensor(token_scores), dim=0)
token_scores = [f"{round(score.item() * 100, 3)}%" for score in normed_scores]
st.session_state.text_table_df = pd.DataFrame(
{"token": search_tokens, "importance": token_scores}
)
st.markdown("**Importance of each text token to relevance score**")
st.table(st.session_state.text_table_df)
def format_vision_mode(mode_stub):
return f"Vision mode: {mode_stub.capitalize()}"
@st.dialog(" ", width="large")
def image_modal(vis_image_id):
visualize_gradcam(vis_image_id)
st.title("Explore Japanese visual aesthetics with CLIP models")
st.markdown(
"""
<style>
[data-testid=stImageCaption] {
padding: 0 0 0 0;
}
[data-testid=stVerticalBlockBorderWrapper] {
line-height: 1.2;
}
[data-testid=stVerticalBlock] {
gap: .75rem;
}
[data-testid=baseButton-secondary] {
min-height: 1rem;
padding: 0 0.75rem;
margin: 0 0 1rem 0;
}
div[aria-label="dialog"]>button[aria-label="Close"] {
display: none;
}
[data-testid=stFullScreenFrame] {
display: flex;
flex-direction: column;
align-items: center;
}
</style>
""",
unsafe_allow_html=True,
)
search_row = st.columns([45, 5, 1, 15, 1, 8, 25], vertical_alignment="center")
with search_row[0]:
search_field = st.text_input(
label="search",
label_visibility="collapsed",
placeholder="Type something, or click a suggested search below.",
on_change=string_search,
key="search_field_value",
)
with search_row[1]:
st.button(
"Search", on_click=string_search, use_container_width=True, type="primary"
)
with search_row[2]:
st.empty()
with search_row[3]:
st.selectbox(
"Vision mode:",
options=["tiled", "stretched", "cropped"],
key="vision_mode",
help="How to consider images that aren't square",
on_change=load_image_features,
format_func=format_vision_mode,
label_visibility="collapsed",
)
with search_row[4]:
st.empty()
with search_row[5]:
st.markdown("**CLIP Model:**")
with search_row[6]:
st.radio(
"CLIP Model",
options=["M-CLIP (multiple languages)", "J-CLIP (日本語)"],
key="active_model",
on_change=string_search,
horizontal=True,
label_visibility="collapsed",
)
canned_searches = st.columns([12, 22, 22, 22, 22], vertical_alignment="top")
with canned_searches[0]:
st.markdown("**Suggested searches:**")
if st.session_state.active_model == "M-CLIP (multiple languages)":
with canned_searches[1]:
st.button(
"negative space",
on_click=clip_search,
args=["negative space"],
use_container_width=True,
)
with canned_searches[2]:
st.button("間", on_click=clip_search, args=["間"], use_container_width=True)
with canned_searches[3]:
st.button("음각", on_click=clip_search, args=["음각"], use_container_width=True)
with canned_searches[4]:
st.button(
"αρνητικός χώρος",
on_click=clip_search,
args=["αρνητικός χώρος"],
use_container_width=True,
)
else:
with canned_searches[1]:
st.button(
"間",
on_click=clip_search,
args=["間"],
use_container_width=True,
)
with canned_searches[2]:
st.button("奥", on_click=clip_search, args=["奥"], use_container_width=True)
with canned_searches[3]:
st.button("山", on_click=clip_search, args=["山"], use_container_width=True)
with canned_searches[4]:
st.button(
"花に酔えり 羽織着て刀 さす女",
on_click=clip_search,
args=["花に酔えり 羽織着て刀 さす女"],
use_container_width=True,
)
controls = st.columns([35, 5, 35, 5, 20], gap="large", vertical_alignment="center")
with controls[0]:
im_per_pg = st.columns([30, 70], vertical_alignment="center")
with im_per_pg[0]:
st.markdown("**Images/page:**")
with im_per_pg[1]:
batch_size = st.select_slider(
"Images/page:", range(10, 50, 10), label_visibility="collapsed"
)
with controls[1]:
st.empty()
with controls[2]:
im_per_row = st.columns([30, 70], vertical_alignment="center")
with im_per_row[0]:
st.markdown("**Images/row:**")
with im_per_row[1]:
row_size = st.select_slider(
"Images/row:", range(1, 6), value=5, label_visibility="collapsed"
)
num_batches = ceil(len(st.session_state.image_ids) / batch_size)
with controls[3]:
st.empty()
with controls[4]:
pager = st.columns([40, 60], vertical_alignment="center")
with pager[0]:
st.markdown(f"Page **{st.session_state.current_page}** of **{num_batches}** ")
with pager[1]:
st.number_input(
"Page",
min_value=1,
max_value=num_batches,
step=1,
label_visibility="collapsed",
key="current_page",
)
if len(st.session_state.search_image_ids) == 0:
batch = []
else:
batch = st.session_state.search_image_ids[
(st.session_state.current_page - 1) * batch_size : st.session_state.current_page
* batch_size
]
grid = st.columns(row_size)
col = 0
for image_id in batch:
with grid[col]:
link_text = st.session_state.images_info.loc[image_id]["permalink"].split("/")[
2
]
# st.image(
# st.session_state.images_info.loc[image_id]["image_url"],
# caption=st.session_state.images_info.loc[image_id]["caption"],
# )
st.html(
f"""<div style="display: flex; flex-direction: column; align-items: center">
<img src="{st.session_state.images_info.loc[image_id]['image_url']}" style="max-width: 100%; max-height: {MAX_IMG_HEIGHT}px" />
<div>{st.session_state.images_info.loc[image_id]['caption']} <b>[{round(st.session_state.search_image_scores[image_id], 3)}]</b></div>
</div>"""
)
st.caption(
f"""<div style="display: flex; flex-direction: column; align-items: center; position: relative; top: -12px">
<a href="{st.session_state.images_info.loc[image_id]['permalink']}">{link_text}</a>
<div>""",
unsafe_allow_html=True,
)
st.button(
"Explain this",
on_click=image_modal,
args=[image_id],
use_container_width=True,
key=image_id,
)
col = (col + 1) % row_size
|