Spaces:
Sleeping
Sleeping
File size: 15,627 Bytes
470905d 08ea95c 575baac 107a11e 08ea95c 12bbd2a c26f5f4 12bbd2a c26f5f4 12bbd2a 107a11e 5859778 7c98d00 5859778 12bbd2a 107a11e 575baac 7c98d00 470905d 575baac 470905d 575baac c26f5f4 575baac 7c98d00 470905d a2d4670 c26f5f4 575baac 7c98d00 575baac 470905d a2d4670 c26f5f4 470905d e0a08b7 470905d dc85134 c26f5f4 470905d e0a08b7 dc85134 e0a08b7 12bbd2a 575baac e08abc4 5859778 7c98d00 470905d 7c98d00 470905d 575baac 470905d dc85134 c26f5f4 470905d 107a11e 08ea95c 9abfd37 08ea95c 107a11e c26f5f4 dc85134 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# app.py
from flask import Flask, request, render_template, jsonify, send_file
from parser import parse_python_code
import os
import json
import io
import chromadb
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModel
import torch
import subprocess # To call process_hf_dataset.py
# User-configurable variables
DB_NAME = "python_programs" # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors" # Hugging Face Dataset name
HF_KEY = "YOUR_HUGGINGFACE_KEY" # Replace with your Hugging Face API key
UPLOAD_DIR = "./uploads" # Directory for uploads
PERSIST_DIR = "./chroma_data" # Directory for persistent ChromaDB storage
USE_GPU = False # Default to CPU, set to True for GPU if available
app = Flask(__name__)
def reconstruct_code(parts):
"""Reconstruct the original code from parsed parts."""
sorted_parts = sorted(parts, key=lambda p: p['location'][0])
return ''.join(part['source'] for part in sorted_parts)
def init_chromadb(persist_dir=PERSIST_DIR):
"""Initialize ChromaDB client, optionally with persistent storage."""
try:
# Use persistent storage if directory exists, otherwise in-memory
if os.path.exists(persist_dir):
client = chromadb.PersistentClient(path=persist_dir)
else:
client = chromadb.Client()
return client
except Exception as e:
print(f"Error initializing ChromaDB: {e}")
return chromadb.Client() # Fallback to in-memory
def create_collection(client, collection_name=DB_NAME):
"""Create or get a ChromaDB collection for Python programs."""
try:
collection = client.get_collection(name=collection_name)
except:
collection = client.create_collection(name=collection_name)
return collection
def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
"""Store a program in ChromaDB with its code, sequence, and vectors."""
collection = create_collection(client, collection_name)
# Flatten vectors to ensure they are a list of numbers (ChromaDB expects flat embeddings)
flattened_vectors = [item for sublist in vectors for item in sublist]
# Store program data (ID, code, sequence, vectors)
program_id = str(hash(code)) # Use hash of code as ID for uniqueness
collection.add(
documents=[code],
metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors))}],
ids=[program_id],
embeddings=[flattened_vectors] # Pass as flat list
)
return program_id
def populate_sample_db(client):
"""Populate ChromaDB with sample Python programs."""
samples = [
"""
import os
def add_one(x):
y = x + 1
return y
""",
"""
def multiply(a, b):
c = a * b
if c > 0:
return c
"""
]
for code in samples:
parts, sequence = parse_python_code(code)
vectors = [part['vector'] for part in parts]
store_program(client, code, sequence, vectors)
def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
"""Query ChromaDB for programs matching the operations sequence or semantic description."""
collection = create_collection(client, collection_name)
if semantic_query:
# Semantic search using CodeBERT embeddings
query_vector = generate_semantic_vector(semantic_query)
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
else:
# Vector-based search for operations sequence
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
# Process results
matching_programs = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
sequence = meta['sequence'].split(',')
if not semantic_query or is_subsequence(operations, sequence): # Ensure sequence match for operations
try:
# Reconstruct program vectors (flatten if needed)
doc_vectors = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
if isinstance(doc_vectors, (list, np.ndarray)) and len(doc_vectors) == 6:
program_vector = doc_vectors # Single flat vector
else:
program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
except:
program_vector = [0] * 6 # Fallback for malformed vectors
similarity = cosine_similarity([query_vector], [program_vector])[0][0] if program_vector and query_vector else 0
matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', '')})
return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)
def create_vector(category, level, location, total_lines, parent_path):
"""Helper to create a vector for query (matches parser's create_vector)."""
category_map = {
'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
}
category_id = category_map.get(category, 0)
start_line, end_line = location
span = (end_line - start_line + 1) / total_lines
center_pos = ((start_line + end_line) / 2) / total_lines
parent_depth = len(parent_path)
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1))
for i, parent in enumerate(parent_path)) / max(1, len(category_map))
return [category_id, level, center_pos, span, parent_depth, parent_weight]
def is_subsequence(subseq, seq):
"""Check if subseq is a subsequence of seq."""
it = iter(seq)
return all(item in it for item in subseq)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return tokens
def generate_semantic_vector(description, use_gpu=USE_GPU):
"""Generate a semantic vector for a textual description using CodeBERT, with CPU/GPU option."""
# Load CodeBERT model and tokenizer
model_name = "microsoft/codebert-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device("cuda" if use_gpu and torch.cuda.is_available() else "cpu")
model = AutoModel.from_pretrained(model_name).to(device)
# Tokenize and encode the description
inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate embeddings
with torch.no_grad():
outputs = model(**inputs)
# Use mean pooling of the last hidden states
vector = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().tolist()
# Truncate or pad to 6D to match our vectors
if len(vector) < 6:
vector.extend([0] * (6 - len(vector)))
elif len(vector) > 6:
vector = vector[:6]
return vector
def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=HF_KEY):
"""Save ChromaDB data to Hugging Face Dataset."""
client = init_chromadb()
collection = create_collection(client)
# Fetch all data from ChromaDB
results = collection.get(include=["documents", "metadatas", "embeddings"])
data = {
"code": results["documents"],
"sequence": [meta["sequence"] for meta in results["metadatas"]],
"vectors": results["embeddings"], # ChromaDB already flattens embeddings
"description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]]
}
# Create a Hugging Face Dataset
dataset = Dataset.from_dict(data)
# Push to Hugging Face Hub
dataset.push_to_hub(dataset_name, token=token)
print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")
def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=HF_KEY):
"""Load ChromaDB data from Hugging Face Dataset, handle empty dataset."""
try:
dataset = load_dataset(dataset_name, split="train", token=token)
except Exception as e:
print(f"Error loading dataset from Hugging Face: {e}. Populating with samples...")
client = init_chromadb()
populate_sample_db(client)
save_chromadb_to_hf() # Create and push a new dataset
return init_chromadb()
client = init_chromadb()
collection = create_collection(client)
for item in dataset:
collection.add(
documents=[item["code"]],
metadatas=[{"sequence": item["sequence"], "description_tokens": item["description_tokens"]}],
ids=[str(hash(item["code"]))],
embeddings=[item["vectors"]]
)
return client
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
parts = None
filename = 'unnamed.py'
code_input = None
query_results = None
# Handle file upload or pasted code (parsing)
if 'file' in request.files and request.files['file'].filename:
file = request.files['file']
if not file.filename.endswith('.py'):
return 'Invalid file type. Please upload a Python file.', 400
filename = file.filename
file_path = os.path.join(UPLOAD_DIR, filename)
file.save(file_path)
with open(file_path, 'r') as f:
code_input = f.read()
parts, sequence = parse_python_code(code_input)
# Store in ChromaDB
client = init_chromadb()
vectors = [part['vector'] for part in parts]
store_program(client, code_input, sequence, vectors, DB_NAME)
elif 'code' in request.form and request.form['code'].strip():
code_input = request.form['code']
filename = request.form.get('filename', 'unnamed.py') or 'unnamed.py'
if not filename.endswith('.py'):
filename += '.py'
parts, sequence = parse_python_code(code_input)
vectors = [part['vector'] for part in parts]
client = init_chromadb()
store_program(client, code_input, sequence, vectors, DB_NAME)
elif 'query_ops' in request.form and request.form['query_ops'].strip():
# Handle query for operations (category sequence)
operations = [op.strip() for op in request.form['query_ops'].split(',')]
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_KEY) # Load from Hugging Face
query_results = query_programs(client, operations, DB_NAME)
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
elif 'semantic_query' in request.form and request.form['semantic_query'].strip():
# Handle semantic query (natural language description)
semantic_query = request.form['semantic_query']
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_KEY) # Load from Hugging Face
query_results = query_programs(client, None, DB_NAME, semantic_query=semantic_query)
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
elif 'process_hf' in request.form:
# Trigger processing of Hugging Face dataset
try:
subprocess.run(['python', 'process_hf_dataset.py'], check=True)
return render_template(
'results_partial.html',
parts=None,
filename="Hugging Face Dataset Processed",
reconstructed_code=None,
code_input=None,
query_results=None,
message="Hugging Face dataset processed and stored successfully."
)
except subprocess.CalledProcessError as e:
return f"Error processing Hugging Face dataset: {e}", 500
if parts:
indexed_parts = [{'index': i + 1, **part} for i, part in enumerate(parts)]
reconstructed_code = reconstruct_code(indexed_parts)
return render_template(
'results_partial.html',
parts=indexed_parts,
filename=filename,
reconstructed_code=reconstructed_code,
code_input=code_input,
query_results=None
)
return 'No file, code, or query provided', 400
# Initial page load
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_KEY) # Load from Hugging Face on startup
# If no dataset exists locally, populate with samples
try:
if not client.list_collections()[0].name == DB_NAME:
populate_sample_db(client)
except:
populate_sample_db(client)
return render_template('index.html', parts=None, filename=None, reconstructed_code=None, code_input=None, query_results=None)
@app.route('/export_json', methods=['POST'])
def export_json():
parts = request.json.get('parts', [])
export_data = [{'vector': part['vector'], 'source': part['source'], 'description': generate_description_tokens([part['category']], [part['vector']])} for part in parts]
json_str = json.dumps(export_data, indent=2)
buffer = io.BytesIO(json_str.encode('utf-8'))
buffer.seek(0)
return send_file(
buffer,
as_attachment=True,
download_name='code_vectors.json',
mimetype='application/json'
)
if __name__ == '__main__':
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR)
app.run(host="0.0.0.0", port=7860) # Bind to all interfaces for Hugging Face Spaces |