Spaces:
Sleeping
Sleeping
File size: 1,416 Bytes
0e3b935 95028b2 0e3b935 95028b2 0e3b935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# inference/app.py
from fastapi import FastAPI
from pydantic import BaseModel
from pathlib import Path
from transformers import pipeline
import os
# Put all caches in writable /tmp
os.environ.setdefault("HF_HOME", "/tmp/hf")
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/transformers")
os.environ.setdefault("HF_DATASETS_CACHE", "/tmp/hf_datasets")
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
app = FastAPI(title="Incident ML Inference API")
# LOCAL_MODEL = Path(__file__).resolve().parents[1] / "models" / "incident_classifier"
# # Category classifier (your fine-tuned model if available)
# if LOCAL_MODEL.exists():
# incident_classifier = pipeline("text-classification", model="brijeshpandya/incident-classifier")
# else:
# incident_classifier = pipeline("text-classification", model="cardiffnlp/twitter-xlm-roberta-base")
incident_classifier = pipeline("text-classification", model="brijeshpandya/incident-classifier")
# Sentiment (keep public model for now)
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment")
class AnalyzeIn(BaseModel):
text: str
@app.get("/health")
def health(): return {"ok": True, "using_local_model": LOCAL_MODEL.exists()}
@app.post("/analyze")
def analyze(data: AnalyzeIn):
return {
"category": incident_classifier(data.text),
"sentiment": sentiment_analyzer(data.text)
}
|