File size: 8,997 Bytes
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Tests for ankigen_core/learning_path.py
import pytest
import pandas as pd
from unittest.mock import patch, MagicMock, ANY
import gradio as gr
from openai import OpenAIError

# Module to test
from ankigen_core.learning_path import analyze_learning_path
from ankigen_core.llm_interface import OpenAIClientManager
from ankigen_core.utils import ResponseCache


@pytest.fixture
def mock_client_manager_learning_path():
    """Provides a mock OpenAIClientManager for learning path tests."""
    manager = MagicMock(spec=OpenAIClientManager)
    mock_client = MagicMock()
    manager.get_client.return_value = mock_client
    manager.initialize_client.return_value = None
    return manager, mock_client


@pytest.fixture
def mock_response_cache_learning_path():
    """Provides a mock ResponseCache for learning path tests."""
    cache = MagicMock(spec=ResponseCache)
    cache.get.return_value = None  # Default to cache miss
    return cache


@patch("ankigen_core.learning_path.structured_output_completion")
def test_analyze_learning_path_success(
    mock_soc, mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test successful learning path analysis."""
    manager, client = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path
    api_key = "valid_key"
    description = "Learn Python for data science"
    model = "gpt-test"

    # Mock the successful response from structured_output_completion
    mock_response = {
        "subjects": [
            {
                "Subject": "Python Basics",
                "Prerequisites": "None",
                "Time Estimate": "2 weeks",
            },
            {
                "Subject": "Pandas",
                "Prerequisites": "Python Basics",
                "Time Estimate": "1 week",
            },
        ],
        "learning_order": "Start with Basics, then move to Pandas.",
        "projects": "Analyze a sample dataset.",
    }
    mock_soc.return_value = mock_response

    df_result, order_text, projects_text = analyze_learning_path(
        client_manager=manager,
        cache=cache,
        api_key=api_key,
        description=description,
        model=model,
    )

    # Assertions
    manager.initialize_client.assert_called_once_with(api_key)
    manager.get_client.assert_called_once()
    mock_soc.assert_called_once_with(
        openai_client=client,
        model=model,
        response_format={"type": "json_object"},
        system_prompt=ANY,
        user_prompt=ANY,  # Could assert description is in here if needed
        cache=cache,
    )

    assert isinstance(df_result, pd.DataFrame)
    assert len(df_result) == 2
    assert list(df_result.columns) == ["Subject", "Prerequisites", "Time Estimate"]
    assert df_result.iloc[0]["Subject"] == "Python Basics"
    assert df_result.iloc[1]["Subject"] == "Pandas"

    assert "Recommended Learning Order" in order_text
    assert "Start with Basics, then move to Pandas." in order_text

    assert "Suggested Projects" in projects_text
    assert "Analyze a sample dataset." in projects_text


def test_analyze_learning_path_no_api_key(
    mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test that gr.Error is raised if API key is missing."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path

    with pytest.raises(gr.Error, match="API key is required"):
        analyze_learning_path(
            client_manager=manager,
            cache=cache,
            api_key="",  # Empty API key
            description="Test",
            model="gpt-test",
        )


def test_analyze_learning_path_client_init_error(
    mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test that gr.Error is raised if client initialization fails."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path
    error_msg = "Invalid Key"
    manager.initialize_client.side_effect = ValueError(error_msg)

    with pytest.raises(gr.Error, match=f"OpenAI Client Error: {error_msg}"):
        analyze_learning_path(
            client_manager=manager,
            cache=cache,
            api_key="invalid_key",
            description="Test",
            model="gpt-test",
        )


@patch("ankigen_core.learning_path.structured_output_completion")
def test_analyze_learning_path_api_error(
    mock_soc, mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test that errors from structured_output_completion are handled."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path
    error_msg = "API connection failed"
    mock_soc.side_effect = OpenAIError(error_msg)

    with pytest.raises(gr.Error, match=f"Failed to analyze learning path: {error_msg}"):
        analyze_learning_path(
            client_manager=manager,
            cache=cache,
            api_key="valid_key",
            description="Test",
            model="gpt-test",
        )


@patch("ankigen_core.learning_path.structured_output_completion")
def test_analyze_learning_path_invalid_response_format(
    mock_soc, mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test handling of invalid response format from API."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path

    # Simulate various invalid responses (excluding cases where subjects list is present but items are invalid)
    invalid_responses = [
        None,
        "just a string",
        {},
        {"subjects": "not a list"},
        {"subjects": [], "learning_order": "Order"},  # Missing projects
        # Removed cases handled by test_analyze_learning_path_invalid_subject_structure
        # {
        #     "subjects": [{"Subject": "S1"}],
        #     "learning_order": "O",
        #     "projects": "P",
        # }, # Missing fields in subject
        # {
        #     "subjects": [
        #         {"Subject": "S1", "Prerequisites": "P1", "Time Estimate": "T1"},
        #         "invalid_entry",
        #     ],
        #     "learning_order": "O",
        #     "projects": "P",
        # }, # Invalid entry in subjects list
    ]

    for mock_response in invalid_responses:
        mock_soc.reset_mock()
        mock_soc.return_value = mock_response
        with pytest.raises(gr.Error, match="invalid API response format"):
            analyze_learning_path(
                client_manager=manager,
                cache=cache,
                api_key="valid_key",
                description="Test Invalid",
                model="gpt-test",
            )


@patch("ankigen_core.learning_path.structured_output_completion")
def test_analyze_learning_path_no_valid_subjects(
    mock_soc, mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test handling when API returns subjects but none are valid."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path

    mock_response = {
        "subjects": [{"wrong_key": "value"}, {}],  # No valid subjects
        "learning_order": "Order",
        "projects": "Projects",
    }
    mock_soc.return_value = mock_response

    with pytest.raises(gr.Error, match="API returned no valid subjects"):
        analyze_learning_path(
            client_manager=manager,
            cache=cache,
            api_key="valid_key",
            description="Test No Valid Subjects",
            model="gpt-test",
        )


@patch("ankigen_core.learning_path.structured_output_completion")
def test_analyze_learning_path_invalid_subject_structure(
    mock_soc, mock_client_manager_learning_path, mock_response_cache_learning_path
):
    """Test handling when subjects list contains ONLY invalid/incomplete dicts."""
    manager, _ = mock_client_manager_learning_path
    cache = mock_response_cache_learning_path

    # Simulate responses where subjects list is present but ALL items are invalid
    invalid_subject_responses = [
        {
            "subjects": [{"Subject": "S1"}],
            "learning_order": "O",
            "projects": "P",
        },  # Missing fields
        {
            "subjects": ["invalid_string"],
            "learning_order": "O",
            "projects": "P",
        },  # String entry only
        {
            "subjects": [{"wrong_key": "value"}],
            "learning_order": "O",
            "projects": "P",
        },  # Wrong keys only
    ]

    for mock_response in invalid_subject_responses:
        mock_soc.reset_mock()
        mock_soc.return_value = mock_response
        with pytest.raises(gr.Error, match="API returned no valid subjects"):
            analyze_learning_path(
                client_manager=manager,
                cache=cache,
                api_key="valid_key",
                description="Test Invalid Subject Structure",
                model="gpt-test",
            )