File size: 29,300 Bytes
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
import pytest
import pandas as pd
import gradio as gr

# Functions to test are from ankigen_core, but we're testing their integration
# with app.py's conceptual structure.
from ankigen_core.ui_logic import update_mode_visibility, use_selected_subjects
from ankigen_core.learning_path import analyze_learning_path
from ankigen_core.card_generator import (
    orchestrate_card_generation,
)
from ankigen_core.exporters import export_csv, export_deck

# For mocking
from unittest.mock import patch, MagicMock, ANY

# We might need to mock these if core functions try to use them and they aren't set up
from ankigen_core.models import Card, CardFront, CardBack

# Placeholder for initial values of text inputs
MOCK_SUBJECT_INPUT = "Initial Subject"
MOCK_DESCRIPTION_INPUT = "Initial Description"
MOCK_TEXT_INPUT = "Initial Text Input"
MOCK_URL_INPUT = "http://initial.url"

EXPECTED_UI_LOGIC_KEYS_MODE_VISIBILITY = [
    "subject_mode_group",
    "path_mode_group",
    "text_mode_group",
    "web_mode_group",
    "path_results_group",
    "cards_output_group",
    "subject_textbox",
    "description_textbox",
    "source_text_textbox",
    "url_textbox",
    "output_dataframe",
    "subjects_dataframe",
    "learning_order_markdown",
    "projects_markdown",
    "progress_html",
    "total_cards_number",
]

EXPECTED_UI_LOGIC_KEYS_USE_SUBJECTS = [
    "generation_mode_radio",
    "subject_mode_group",
    "path_mode_group",
    "text_mode_group",
    "web_mode_group",
    "path_results_group",
    "cards_output_group",
    "subject_textbox",
    "description_textbox",
    "source_text_textbox",
    "url_textbox",
    "topic_number_slider",
    "preference_prompt_textbox",
    "output_dataframe",
    "subjects_dataframe",
    "learning_order_markdown",
    "projects_markdown",
    "progress_html",
    "total_cards_number",
]


@pytest.mark.parametrize(
    "mode, expected_visibilities, expected_values",
    [
        (
            "subject",
            {  # Expected visibility for groups/outputs
                "subject_mode_group": True,
                "path_mode_group": False,
                "text_mode_group": False,
                "web_mode_group": False,
                "path_results_group": False,
                "cards_output_group": True,
            },
            {  # Expected values for textboxes
                "subject_textbox": MOCK_SUBJECT_INPUT,
                "description_textbox": "",
                "source_text_textbox": "",
                "url_textbox": "",
            },
        ),
        (
            "path",
            {
                "subject_mode_group": False,
                "path_mode_group": True,
                "text_mode_group": False,
                "web_mode_group": False,
                "path_results_group": True,
                "cards_output_group": False,
            },
            {
                "subject_textbox": "",
                "description_textbox": MOCK_DESCRIPTION_INPUT,
                "source_text_textbox": "",
                "url_textbox": "",
            },
        ),
        (
            "text",
            {
                "subject_mode_group": False,
                "path_mode_group": False,
                "text_mode_group": True,
                "web_mode_group": False,
                "path_results_group": False,
                "cards_output_group": True,
            },
            {
                "subject_textbox": "",
                "description_textbox": "",
                "source_text_textbox": MOCK_TEXT_INPUT,
                "url_textbox": "",
            },
        ),
        (
            "web",
            {
                "subject_mode_group": False,
                "path_mode_group": False,
                "text_mode_group": False,
                "web_mode_group": True,
                "path_results_group": False,
                "cards_output_group": True,
            },
            {
                "subject_textbox": "",
                "description_textbox": "",
                "source_text_textbox": "",
                "url_textbox": MOCK_URL_INPUT,
            },
        ),
    ],
)
def test_generation_mode_change_updates_ui_correctly(
    mode, expected_visibilities, expected_values
):
    """
    Tests that changing the generation_mode correctly calls update_mode_visibility
    and the returned dictionary would update app.py's UI components as expected.
    """
    result_dict = update_mode_visibility(
        mode=mode,
        current_subject=MOCK_SUBJECT_INPUT,
        current_description=MOCK_DESCRIPTION_INPUT,
        current_text=MOCK_TEXT_INPUT,
        current_url=MOCK_URL_INPUT,
    )

    # Check that all expected component keys are present in the result
    for key in EXPECTED_UI_LOGIC_KEYS_MODE_VISIBILITY:
        assert key in result_dict, f"Key {key} missing in result for mode {mode}"

    # Check visibility of mode-specific groups and output areas
    for component_key, expected_visibility in expected_visibilities.items():
        assert (
            result_dict[component_key]["visible"] == expected_visibility
        ), f"Visibility for {component_key} in mode '{mode}' was not {expected_visibility}"

    # Check values of input textboxes (preserved for active mode, cleared for others)
    for component_key, expected_value in expected_values.items():
        assert (
            result_dict[component_key]["value"] == expected_value
        ), f"Value for {component_key} in mode '{mode}' was not '{expected_value}'"

    # Check that output/status components are cleared/reset
    assert result_dict["output_dataframe"]["value"] is None
    assert result_dict["subjects_dataframe"]["value"] is None
    assert result_dict["learning_order_markdown"]["value"] == ""
    assert result_dict["projects_markdown"]["value"] == ""
    assert result_dict["progress_html"]["value"] == ""
    assert result_dict["progress_html"]["visible"] is False
    assert result_dict["total_cards_number"]["value"] == 0
    assert result_dict["total_cards_number"]["visible"] is False


@patch("ankigen_core.learning_path.structured_output_completion")
@patch("ankigen_core.learning_path.OpenAIClientManager")  # To mock the instance passed
@patch("ankigen_core.learning_path.ResponseCache")  # To mock the instance passed
def test_analyze_learning_path_button_click(
    mock_response_cache_class, mock_client_manager_class, mock_soc
):
    """
    Tests that the analyze_button.click event (calling analyze_learning_path)
    processes inputs and produces outputs correctly for UI update.
    """
    # Setup mocks for manager and cache instances
    mock_client_manager_instance = mock_client_manager_class.return_value
    mock_openai_client = MagicMock()
    mock_client_manager_instance.get_client.return_value = mock_openai_client
    mock_client_manager_instance.initialize_client.return_value = (
        None  # Simulate successful init
    )

    mock_cache_instance = mock_response_cache_class.return_value
    mock_cache_instance.get.return_value = None  # Default cache miss

    # Mock inputs from UI
    test_api_key = "sk-testkey123"
    test_description = "Become a data scientist"
    test_model = "gpt-4.1-test"

    # Mock the response from structured_output_completion
    mock_llm_response = {
        "subjects": [
            {
                "Subject": "Python Basics",
                "Prerequisites": "None",
                "Time Estimate": "4 weeks",
            },
            {
                "Subject": "Pandas & NumPy",
                "Prerequisites": "Python Basics",
                "Time Estimate": "3 weeks",
            },
        ],
        "learning_order": "1. Python Basics\n2. Pandas & NumPy",
        "projects": "Analyze a public dataset.",
    }
    mock_soc.return_value = mock_llm_response

    # Call the function that the button click would trigger
    df_subjects, md_order, md_projects = analyze_learning_path(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        api_key=test_api_key,
        description=test_description,
        model=test_model,
    )

    # Assertions
    mock_client_manager_instance.initialize_client.assert_called_once_with(test_api_key)
    mock_client_manager_instance.get_client.assert_called_once()
    mock_soc.assert_called_once_with(
        openai_client=mock_openai_client,
        model=test_model,
        response_format={"type": "json_object"},
        system_prompt=ANY,  # System prompt is internally generated
        user_prompt=ANY,  # User prompt is internally generated, check if needed
        cache=mock_cache_instance,
    )
    # Check that the input description is part of the user_prompt for SOC
    assert test_description in mock_soc.call_args[1]["user_prompt"]

    # Assert DataFrame output
    assert isinstance(df_subjects, pd.DataFrame)
    assert len(df_subjects) == 2
    assert df_subjects.iloc[0]["Subject"] == "Python Basics"
    assert list(df_subjects.columns) == ["Subject", "Prerequisites", "Time Estimate"]

    # Assert Markdown outputs (basic check for content)
    assert "Python Basics" in md_order
    assert "Pandas & NumPy" in md_order
    assert "Analyze a public dataset." in md_projects

    # Test for gr.Error when API key is missing
    with pytest.raises(gr.Error, match="API key is required"):
        analyze_learning_path(
            client_manager=mock_client_manager_instance,
            cache=mock_cache_instance,
            api_key="",  # Empty API key
            description=test_description,
            model=test_model,
        )

    # Test for gr.Error when structured_output_completion returns invalid format
    mock_soc.return_value = {"wrong_key": "data"}  # Invalid response from LLM
    with pytest.raises(gr.Error, match="invalid API response format"):
        analyze_learning_path(
            client_manager=mock_client_manager_instance,
            cache=mock_cache_instance,
            api_key=test_api_key,
            description=test_description,
            model=test_model,
        )


def test_use_selected_subjects_button_click_success():
    """Test that use_subjects_button.click (calling use_selected_subjects) works correctly."""
    sample_data = {
        "Subject": ["Intro to Python", "Data Structures", "Algorithms"],
        "Prerequisites": ["None", "Intro to Python", "Data Structures"],
        "Time Estimate": ["2 weeks", "3 weeks", "4 weeks"],
    }
    subjects_df = pd.DataFrame(sample_data)

    result_dict = use_selected_subjects(subjects_df)

    # Check all expected keys are present
    for key in EXPECTED_UI_LOGIC_KEYS_USE_SUBJECTS:
        assert key in result_dict, f"Key {key} missing in use_selected_subjects result"

    # Check direct value updates
    assert result_dict["generation_mode_radio"] == "subject"
    assert (
        result_dict["subject_textbox"] == "Intro to Python, Data Structures, Algorithms"
    )
    assert result_dict["topic_number_slider"] == 4  # len(subjects) + 1 = 3 + 1
    assert (
        "connections between these subjects" in result_dict["preference_prompt_textbox"]
    )
    assert result_dict["description_textbox"] == ""
    assert result_dict["source_text_textbox"] == ""
    assert result_dict["url_textbox"] == ""
    assert result_dict["subjects_dataframe"] is subjects_df  # Direct assignment

    # Check gr.update calls for visibility
    assert result_dict["subject_mode_group"]["visible"] is True
    assert result_dict["path_mode_group"]["visible"] is False
    assert result_dict["text_mode_group"]["visible"] is False
    assert result_dict["web_mode_group"]["visible"] is False
    assert result_dict["path_results_group"]["visible"] is False
    assert result_dict["cards_output_group"]["visible"] is True

    # Check gr.update calls for clearing/resetting values
    assert result_dict["output_dataframe"]["value"] is None
    assert result_dict["progress_html"]["visible"] is False
    assert result_dict["total_cards_number"]["visible"] is False

    # Check that learning_order and projects_markdown are gr.update() (no change)
    # gr.update() with no args is a dict with only '__type__': 'update'
    assert isinstance(result_dict["learning_order_markdown"], dict)
    assert result_dict["learning_order_markdown"].get("__type__") == "update"
    assert len(result_dict["learning_order_markdown"]) == 1  # Only __type__

    assert isinstance(result_dict["projects_markdown"], dict)
    assert result_dict["projects_markdown"].get("__type__") == "update"
    assert len(result_dict["projects_markdown"]) == 1


@patch("ankigen_core.ui_logic.gr.Warning")
def test_use_selected_subjects_button_click_none_df(mock_gr_warning):
    """Test use_selected_subjects with None DataFrame input."""
    result_dict = use_selected_subjects(None)
    mock_gr_warning.assert_called_once_with(
        "No subjects available to copy from Learning Path analysis."
    )
    # Check it returns a dict of gr.update() no-ops
    for key in EXPECTED_UI_LOGIC_KEYS_USE_SUBJECTS:
        assert key in result_dict
        assert isinstance(result_dict[key], dict)
        assert result_dict[key].get("__type__") == "update"
        assert len(result_dict[key]) == 1


@patch("ankigen_core.ui_logic.gr.Warning")
def test_use_selected_subjects_button_click_empty_df(mock_gr_warning):
    """Test use_selected_subjects with an empty DataFrame."""
    result_dict = use_selected_subjects(pd.DataFrame())
    mock_gr_warning.assert_called_once_with(
        "No subjects available to copy from Learning Path analysis."
    )
    for key in EXPECTED_UI_LOGIC_KEYS_USE_SUBJECTS:
        assert key in result_dict
        assert isinstance(result_dict[key], dict)
        assert result_dict[key].get("__type__") == "update"
        assert len(result_dict[key]) == 1


@patch("ankigen_core.ui_logic.gr.Error")
def test_use_selected_subjects_button_click_missing_column(mock_gr_error):
    """Test use_selected_subjects with DataFrame missing 'Subject' column."""
    result_dict = use_selected_subjects(pd.DataFrame({"WrongColumn": ["data"]}))
    mock_gr_error.assert_called_once_with(
        "Learning path analysis result is missing the 'Subject' column."
    )
    for key in EXPECTED_UI_LOGIC_KEYS_USE_SUBJECTS:
        assert key in result_dict
        assert isinstance(result_dict[key], dict)
        assert result_dict[key].get("__type__") == "update"
        assert len(result_dict[key]) == 1


# --- Test for Generate Button Click --- #


# Helper to create common mock inputs for orchestrate_card_generation
def get_orchestrator_mock_inputs(generation_mode="subject", api_key="sk-test"):
    return {
        "api_key_input": api_key,
        "subject": "Test Subject for Orchestrator",
        "generation_mode": generation_mode,
        "source_text": "Some source text for testing.",
        "url_input": "http://example.com/test-page",
        "model_name": "gpt-test-orchestrator",
        "topic_number": 2,  # For subject mode
        "cards_per_topic": 3,  # For subject mode / text mode / web mode
        "preference_prompt": "Test preferences",
        "generate_cloze": False,
    }


@patch("ankigen_core.card_generator.generate_cards_batch")
@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.OpenAIClientManager")
@patch("ankigen_core.card_generator.ResponseCache")
@patch(
    "ankigen_core.card_generator.gr"
)  # Mocking the entire gradio module used within card_generator
def test_generate_button_click_subject_mode(
    mock_gr, mock_response_cache_class, mock_client_manager_class, mock_soc, mock_gcb
):
    """Test orchestrate_card_generation for 'subject' mode."""
    mock_client_manager_instance = mock_client_manager_class.return_value
    mock_openai_client = MagicMock()
    mock_client_manager_instance.get_client.return_value = mock_openai_client

    mock_cache_instance = mock_response_cache_class.return_value
    mock_cache_instance.get.return_value = None

    mock_inputs = get_orchestrator_mock_inputs(generation_mode="subject")

    # Mock for topic generation call (first SOC call)
    mock_topic_response = {
        "topics": [
            {"name": "Topic Alpha", "difficulty": "easy", "description": "First topic"},
            {
                "name": "Topic Beta",
                "difficulty": "medium",
                "description": "Second topic",
            },
        ]
    }
    # Mock for card generation (generate_cards_batch calls)
    mock_cards_batch_alpha = [
        Card(
            front=CardFront(question="Q_A1"),
            back=CardBack(answer="A_A1", explanation="E_A1", example="Ex_A1"),
        ),
        Card(
            front=CardFront(question="Q_A2"),
            back=CardBack(answer="A_A2", explanation="E_A2", example="Ex_A2"),
        ),
    ]
    mock_cards_batch_beta = [
        Card(
            front=CardFront(question="Q_B1"),
            back=CardBack(answer="A_B1", explanation="E_B1", example="Ex_B1"),
        ),
    ]

    # Configure side effects: first SOC for topics, then GCB for each topic
    mock_soc.return_value = mock_topic_response  # For the topics call
    mock_gcb.side_effect = [mock_cards_batch_alpha, mock_cards_batch_beta]

    df_result, status_html, count = orchestrate_card_generation(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        **mock_inputs,
    )

    mock_client_manager_instance.initialize_client.assert_called_once_with(
        mock_inputs["api_key_input"]
    )

    # Assertions for SOC (topic generation)
    mock_soc.assert_called_once_with(
        openai_client=mock_openai_client,
        model=mock_inputs["model_name"],
        response_format={"type": "json_object"},
        system_prompt=ANY,
        user_prompt=ANY,
        cache=mock_cache_instance,
    )
    assert mock_inputs["subject"] in mock_soc.call_args[1]["user_prompt"]
    assert str(mock_inputs["topic_number"]) in mock_soc.call_args[1]["user_prompt"]

    # Assertions for generate_cards_batch calls
    assert mock_gcb.call_count == 2
    mock_gcb.assert_any_call(
        openai_client=mock_openai_client,
        cache=mock_cache_instance,
        model=mock_inputs["model_name"],
        topic="Topic Alpha",
        num_cards=mock_inputs["cards_per_topic"],
        system_prompt=ANY,
        generate_cloze=False,
    )
    mock_gcb.assert_any_call(
        openai_client=mock_openai_client,
        cache=mock_cache_instance,
        model=mock_inputs["model_name"],
        topic="Topic Beta",
        num_cards=mock_inputs["cards_per_topic"],
        system_prompt=ANY,
        generate_cloze=False,
    )

    assert isinstance(df_result, pd.DataFrame)
    assert len(df_result) == 3  # 2 from alpha, 1 from beta
    assert count == 3
    assert "Generation complete!" in status_html
    assert "Total cards generated: 3" in status_html

    # Check gr.Info was called (e.g., for successful topic generation, card batch generation)
    # Example: mock_gr.Info.assert_any_call("✨ Generated 2 topics successfully! Now generating cards...")
    # More specific assertions can be added if needed for gr.Info/Warning calls
    assert mock_gr.Info.called


@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.OpenAIClientManager")
@patch("ankigen_core.card_generator.ResponseCache")
@patch("ankigen_core.card_generator.gr")  # Mocking the entire gradio module
def test_generate_button_click_text_mode(
    mock_gr, mock_response_cache_class, mock_client_manager_class, mock_soc
):
    """Test orchestrate_card_generation for 'text' mode."""
    mock_client_manager_instance = mock_client_manager_class.return_value
    mock_openai_client = MagicMock()
    mock_client_manager_instance.get_client.return_value = mock_openai_client

    mock_cache_instance = mock_response_cache_class.return_value
    mock_cache_instance.get.return_value = None

    mock_inputs = get_orchestrator_mock_inputs(generation_mode="text")

    # Mock for card generation call (single SOC call in text mode)
    mock_card_data_from_text = {
        "cards": [
            {
                "card_type": "basic",
                "front": {"question": "Q_Text1"},
                "back": {
                    "answer": "A_Text1",
                    "explanation": "E_Text1",
                    "example": "Ex_Text1",
                },
                "metadata": {},
            },
            {
                "card_type": "cloze",
                "front": {"question": "{{c1::Q_Text2}}"},
                "back": {
                    "answer": "A_Text2_Full",
                    "explanation": "E_Text2",
                    "example": "Ex_Text2",
                },
                "metadata": {},
            },
        ]
    }
    mock_soc.return_value = mock_card_data_from_text

    # orchestrate_card_generation calls generate_cards_batch internally, which then calls structured_output_completion.
    # For text mode, orchestrate_card_generation directly calls structured_output_completion.
    df_result, status_html, count = orchestrate_card_generation(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        **mock_inputs,
    )

    mock_client_manager_instance.initialize_client.assert_called_once_with(
        mock_inputs["api_key_input"]
    )

    # Assertions for SOC (direct card generation from text)
    mock_soc.assert_called_once_with(
        openai_client=mock_openai_client,
        model=mock_inputs["model_name"],
        response_format={"type": "json_object"},
        system_prompt=ANY,
        user_prompt=ANY,
        cache=mock_cache_instance,
    )
    # Ensure the source_text is in the prompt for SOC
    assert mock_inputs["source_text"] in mock_soc.call_args[1]["user_prompt"]
    # Ensure cards_per_topic is in the prompt
    assert str(mock_inputs["cards_per_topic"]) in mock_soc.call_args[1]["user_prompt"]

    assert isinstance(df_result, pd.DataFrame)
    assert len(df_result) == 2
    assert count == 2
    mock_gr.Info.assert_any_call("βœ… Generated 2 cards from the provided content.")
    assert "Generation complete!" in status_html
    assert "Total cards generated: 2" in status_html
    assert mock_gr.Info.called


@patch("ankigen_core.card_generator.fetch_webpage_text")
@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.OpenAIClientManager")
@patch("ankigen_core.card_generator.ResponseCache")
@patch("ankigen_core.card_generator.gr")  # Mocking the entire gradio module
def test_generate_button_click_web_mode(
    mock_gr,
    mock_response_cache_class,
    mock_client_manager_class,
    mock_soc,
    mock_fetch_web,
):
    """Test orchestrate_card_generation for 'web' mode."""
    mock_client_manager_instance = mock_client_manager_class.return_value
    mock_openai_client = MagicMock()
    mock_client_manager_instance.get_client.return_value = mock_openai_client

    mock_cache_instance = mock_response_cache_class.return_value
    mock_cache_instance.get.return_value = None

    mock_inputs = get_orchestrator_mock_inputs(generation_mode="web")
    mock_fetched_text = "This is the text fetched from the website."
    mock_fetch_web.return_value = mock_fetched_text

    mock_card_data_from_web = {
        "cards": [
            {
                "card_type": "basic",
                "front": {"question": "Q_Web1"},
                "back": {
                    "answer": "A_Web1",
                    "explanation": "E_Web1",
                    "example": "Ex_Web1",
                },
                "metadata": {},
            }
        ]
    }
    mock_soc.return_value = mock_card_data_from_web

    # Call the function (successful path)
    df_result, status_html, count = orchestrate_card_generation(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        **mock_inputs,
    )
    assert isinstance(df_result, pd.DataFrame)
    assert len(df_result) == 1
    assert count == 1
    mock_gr.Info.assert_any_call(
        f"βœ… Successfully fetched text (approx. {len(mock_fetched_text)} chars). Starting AI generation..."
    )
    mock_gr.Info.assert_any_call("βœ… Generated 1 cards from the provided content.")
    assert "Generation complete!" in status_html

    # Test web fetch error handling
    mock_fetch_web.reset_mock()
    mock_soc.reset_mock()
    mock_gr.reset_mock()
    mock_client_manager_instance.initialize_client.reset_mock()

    fetch_error_message = "Could not connect to host"
    mock_fetch_web.side_effect = ConnectionError(fetch_error_message)

    # Call the function again, expecting gr.Error to be called by the production code
    df_err, html_err, count_err = orchestrate_card_generation(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        **mock_inputs,
    )

    # Assert that gr.Error was called with the correct message by the production code
    mock_gr.Error.assert_called_once_with(
        f"Failed to get content from URL: {fetch_error_message}"
    )
    assert df_err.empty
    assert html_err == "Failed to get content from URL."
    assert count_err == 0
    mock_soc.assert_not_called()  # Ensure SOC was not called after fetch error


# Test for unsupported 'path' mode
@patch("ankigen_core.card_generator.OpenAIClientManager")
@patch("ankigen_core.card_generator.ResponseCache")
@patch("ankigen_core.card_generator.gr")  # Mock gr for this test too
def test_generate_button_click_path_mode_error(
    mock_gr,  # mock_gr is an argument
    mock_response_cache_class,
    mock_client_manager_class,
):
    """Test that 'path' mode calls gr.Error for being unsupported."""
    mock_client_manager_instance = mock_client_manager_class.return_value
    mock_cache_instance = mock_response_cache_class.return_value
    mock_inputs = get_orchestrator_mock_inputs(generation_mode="path")

    # Call the function
    df_err, html_err, count_err = orchestrate_card_generation(
        client_manager=mock_client_manager_instance,
        cache=mock_cache_instance,
        **mock_inputs,
    )

    # Assert gr.Error was called with the specific unsupported mode message
    mock_gr.Error.assert_called_once_with("Unsupported generation mode selected: path")
    assert df_err.empty
    assert html_err == "Unsupported mode."
    assert count_err == 0


# --- Test Export Buttons --- #


# @patch("ankigen_core.exporters.export_csv") # Using mocker instead
def test_export_csv_button_click(mocker):  # Added mocker fixture
    """Test that export_csv_button click calls the correct core function."""
    # Patch the target function as it's imported in *this test module*
    mock_export_csv_in_test_module = mocker.patch(
        "tests.integration.test_app_interactions.export_csv"
    )

    # Simulate the DataFrame that would be in the UI
    sample_df_data = {
        "Index": ["1.1"],
        "Topic": ["T1"],
        "Card_Type": ["basic"],
        "Question": ["Q1"],
        "Answer": ["A1"],
        "Explanation": ["E1"],
        "Example": ["Ex1"],
        "Prerequisites": [[]],
        "Learning_Outcomes": [[]],
        "Common_Misconceptions": [[]],
        "Difficulty": ["easy"],
    }
    mock_ui_dataframe = pd.DataFrame(sample_df_data)
    # Set the return value on the mock that will actually be called
    mock_export_csv_in_test_module.return_value = "/fake/path/export.csv"

    # Simulate the call that app.py would make.
    # Here we are directly calling the `export_csv` function imported at the top of this test file.
    # This imported function is now replaced by `mock_export_csv_in_test_module`.
    result_path = export_csv(mock_ui_dataframe)

    # Assert the core function was called correctly
    mock_export_csv_in_test_module.assert_called_once_with(mock_ui_dataframe)
    assert result_path == "/fake/path/export.csv"


# @patch("ankigen_core.exporters.export_deck") # Using mocker instead
def test_export_anki_button_click(mocker):  # Added mocker fixture
    """Test that export_anki_button click calls the correct core function."""
    # Patch the target function as it's imported in *this test module*
    mock_export_deck_in_test_module = mocker.patch(
        "tests.integration.test_app_interactions.export_deck"
    )

    # Simulate the DataFrame and subject input
    sample_df_data = {
        "Index": ["1.1"],
        "Topic": ["T1"],
        "Card_Type": ["basic"],
        "Question": ["Q1"],
        "Answer": ["A1"],
        "Explanation": ["E1"],
        "Example": ["Ex1"],
        "Prerequisites": [[]],
        "Learning_Outcomes": [[]],
        "Common_Misconceptions": [[]],
        "Difficulty": ["easy"],
    }
    mock_ui_dataframe = pd.DataFrame(sample_df_data)
    mock_subject_input = "My Anki Deck Subject"
    mock_export_deck_in_test_module.return_value = "/fake/path/export.apkg"

    # Simulate the call that app.py would make
    result_path = export_deck(mock_ui_dataframe, mock_subject_input)

    # Assert the core function was called correctly
    mock_export_deck_in_test_module.assert_called_once_with(
        mock_ui_dataframe, mock_subject_input
    )
    assert result_path == "/fake/path/export.apkg"