File size: 22,322 Bytes
d09f6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# Module for core card generation logic
import gradio as gr
import pandas as pd
# Imports from our core modules
from ankigen_core.utils import get_logger, ResponseCache, fetch_webpage_text
from ankigen_core.llm_interface import OpenAIClientManager, structured_output_completion
from ankigen_core.models import (
Card,
CardFront,
CardBack,
) # Import necessary Pydantic models
logger = get_logger()
# --- Constants --- (Moved from app.py)
AVAILABLE_MODELS = [
{
"value": "gpt-4.1",
"label": "gpt-4.1 (Best Quality)",
"description": "Highest quality, slower generation",
},
{
"value": "gpt-4.1-nano",
"label": "gpt-4.1 Nano (Fast & Efficient)",
"description": "Optimized for speed and lower cost",
},
]
GENERATION_MODES = [
{
"value": "subject",
"label": "Single Subject",
"description": "Generate cards for a specific topic",
},
{
"value": "path",
"label": "Learning Path",
"description": "Break down a job description or learning goal into subjects",
},
{
"value": "text",
"label": "From Text",
"description": "Generate cards from provided text",
},
{
"value": "web",
"label": "From Web",
"description": "Generate cards from a web page URL",
},
]
# --- Core Functions --- (Moved and adapted from app.py)
def generate_cards_batch(
openai_client, # Renamed from client to openai_client for clarity
cache: ResponseCache, # Added cache parameter
model: str,
topic: str,
num_cards: int,
system_prompt: str,
generate_cloze: bool = False,
batch_size: int = 3, # Keep batch_size, though not explicitly used in this version
):
"""Generate a batch of cards for a topic, potentially including cloze deletions"""
cloze_instruction = ""
if generate_cloze:
cloze_instruction = """
Where appropriate, generate Cloze deletion cards.
- For Cloze cards, set "card_type" to "cloze".
- Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
- The "answer" field should contain the full, non-cloze text or specific context for the cloze.
- For standard question/answer cards, set "card_type" to "basic".
"""
cards_prompt = f"""
Generate {num_cards} flashcards for the topic: {topic}
{cloze_instruction}
Return your response as a JSON object with the following structure:
{{
"cards": [
{{
"card_type": "basic or cloze",
"front": {{
"question": "question text (potentially with {{{{c1::cloze syntax}}}})"
}},
"back": {{
"answer": "concise answer or full text for cloze",
"explanation": "detailed explanation",
"example": "practical example"
}},
"metadata": {{
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}}
}}
// ... more cards
]
}}
"""
try:
logger.info(
f"Generating card batch for {topic}, Cloze enabled: {generate_cloze}"
)
# Call the imported structured_output_completion, passing client and cache
response = structured_output_completion(
openai_client=openai_client,
model=model,
response_format={"type": "json_object"},
system_prompt=system_prompt,
user_prompt=cards_prompt,
cache=cache, # Pass the cache instance
)
if not response or "cards" not in response:
logger.error("Invalid cards response format")
raise ValueError("Failed to generate cards. Please try again.")
cards_list = []
for card_data in response["cards"]:
if "front" not in card_data or "back" not in card_data:
logger.warning(
f"Skipping card due to missing front/back data: {card_data}"
)
continue
if "question" not in card_data["front"]:
logger.warning(f"Skipping card due to missing question: {card_data}")
continue
if (
"answer" not in card_data["back"]
or "explanation" not in card_data["back"]
or "example" not in card_data["back"]
):
logger.warning(
f"Skipping card due to missing answer/explanation/example: {card_data}"
)
continue
# Use imported Pydantic models
card = Card(
card_type=card_data.get("card_type", "basic"),
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {}),
)
cards_list.append(card)
return cards_list
except Exception as e:
logger.error(
f"Failed to generate cards batch for {topic}: {str(e)}", exc_info=True
)
raise # Re-raise for the main function to handle
def orchestrate_card_generation( # Renamed from generate_cards
client_manager: OpenAIClientManager, # Expect the manager
cache: ResponseCache, # Expect the cache instance
# --- UI Inputs --- (These will be passed from app.py handler)
api_key_input: str,
subject: str,
generation_mode: str,
source_text: str,
url_input: str,
model_name: str,
topic_number: int,
cards_per_topic: int,
preference_prompt: str,
generate_cloze: bool,
):
"""Orchestrates the card generation process based on UI inputs."""
logger.info(f"Starting card generation orchestration in {generation_mode} mode")
logger.debug(
f"Parameters: mode={generation_mode}, topics={topic_number}, cards_per_topic={cards_per_topic}, cloze={generate_cloze}"
)
# --- Initialization and Validation ---
if not api_key_input:
logger.warning("No API key provided to orchestrator")
gr.Error("OpenAI API key is required")
return pd.DataFrame(columns=get_dataframe_columns()), "API key is required.", 0
# Re-initialize client via manager if API key changes or not initialized
# This logic might need refinement depending on how API key state is managed in UI
try:
# Attempt to initialize (will raise error if key is invalid)
client_manager.initialize_client(api_key_input)
openai_client = client_manager.get_client()
except (ValueError, RuntimeError, Exception) as e:
logger.error(f"Client initialization failed in orchestrator: {e}")
gr.Error(f"OpenAI Client Error: {e}")
return (
pd.DataFrame(columns=get_dataframe_columns()),
f"OpenAI Client Error: {e}",
0,
)
model = model_name
flattened_data = []
total_cards_generated = 0
# Use track_tqdm=True in the calling Gradio handler if desired
# progress_tracker = gr.Progress(track_tqdm=True)
# -------------------------------------
try:
page_text_for_generation = ""
# --- Web Mode ---
if generation_mode == "web":
logger.info("Orchestrator: Web Mode")
if not url_input or not url_input.strip():
gr.Error("URL is required for 'From Web' mode.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"URL is required.",
0,
)
# Use imported fetch_webpage_text
gr.Info(f"πΈοΈ Fetching content from {url_input}...")
try:
page_text_for_generation = fetch_webpage_text(url_input)
if (
not page_text_for_generation
): # Handle case where fetch is successful but returns no text
gr.Warning(
f"Could not extract meaningful text content from {url_input}. Please check the page or try another URL."
)
# Return empty results gracefully
return (
pd.DataFrame(columns=get_dataframe_columns()),
"No meaningful text extracted from URL.",
0,
)
gr.Info(
f"β
Successfully fetched text (approx. {len(page_text_for_generation)} chars). Starting AI generation..."
)
except (ConnectionError, ValueError, RuntimeError) as e:
logger.error(f"Failed to fetch or process URL {url_input}: {e}")
gr.Error(f"Failed to get content from URL: {e}")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Failed to get content from URL.",
0,
)
except Exception as e:
logger.error(
f"Unexpected error fetching URL {url_input}: {e}", exc_info=True
)
gr.Error("An unexpected error occurred fetching the URL.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Unexpected error fetching URL.",
0,
)
# --- Text Mode ---
elif generation_mode == "text":
logger.info("Orchestrator: Text Input Mode")
if not source_text or not source_text.strip():
gr.Error("Source text is required for 'From Text' mode.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Source text is required.",
0,
)
page_text_for_generation = source_text
gr.Info("π Starting card generation from text...")
# --- Generation from Text/Web Content --- (Common Logic)
if generation_mode == "text" or generation_mode == "web":
topic_name = (
"From Web Content" if generation_mode == "web" else "From Text Input"
)
logger.info(f"Generating cards directly from content: {topic_name}")
# Prepare prompts (Consider moving prompt templates to a constants file or dedicated module later)
text_system_prompt = f"""
You are an expert educator creating flashcards from provided text.
Generate {cards_per_topic} clear, concise flashcards based *only* on the text given.
Focus on key concepts, definitions, facts, or processes.
Adhere to the user's learning preferences: {preference_prompt}
Use the specified JSON output format.
Format code examples with triple backticks (```).
"""
json_structure_prompt = get_card_json_structure_prompt()
cloze_instruction = get_cloze_instruction(generate_cloze)
text_user_prompt = f"""
Generate {cards_per_topic} flashcards based *only* on the following text:
--- TEXT START ---
{page_text_for_generation}
--- TEXT END ---
{cloze_instruction}
{json_structure_prompt}
"""
# Call LLM interface
response = structured_output_completion(
openai_client=openai_client,
model=model,
response_format={"type": "json_object"},
system_prompt=text_system_prompt,
user_prompt=text_user_prompt,
cache=cache,
)
if not response or "cards" not in response:
logger.error("Invalid cards response format from text/web generation.")
gr.Error("Failed to generate cards from content. Please try again.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Failed to generate cards from content.",
0,
)
cards_data = response["cards"]
card_list = process_raw_cards_data(cards_data)
flattened_data.extend(
format_cards_for_dataframe(card_list, topic_name, start_index=1)
)
total_cards_generated = len(flattened_data)
gr.Info(
f"β
Generated {total_cards_generated} cards from the provided content."
)
# --- Subject Mode ---
elif generation_mode == "subject":
logger.info(f"Orchestrator: Subject Mode for {subject}")
if not subject or not subject.strip():
gr.Error("Subject is required for 'Single Subject' mode.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Subject is required.",
0,
)
gr.Info("π Starting card generation for subject...")
system_prompt = f"""
You are an expert educator in {subject}. Create an optimized learning sequence.
Break down {subject} into {topic_number} logical concepts/topics, ordered by difficulty.
Keep in mind the user's preferences: {preference_prompt}
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects/topics to know about {subject}
ordered by ascending difficulty (beginner to advanced).
Return your response as a JSON object: {{"topics": [{{"name": "topic name", "difficulty": "beginner/intermediate/advanced", "description": "brief description"}}]}}
"""
logger.info("Generating topics...")
topics_response = structured_output_completion(
openai_client=openai_client,
model=model,
response_format={"type": "json_object"},
system_prompt=system_prompt,
user_prompt=topic_prompt,
cache=cache,
)
if not topics_response or "topics" not in topics_response:
logger.error("Invalid topics response format")
gr.Error("Failed to generate topics. Please try again.")
return (
pd.DataFrame(columns=get_dataframe_columns()),
"Failed to generate topics.",
0,
)
topics = topics_response["topics"]
gr.Info(
f"β¨ Generated {len(topics)} topics successfully! Now generating cards..."
)
# System prompt for card generation (reused for each batch)
card_system_prompt = f"""
You are an expert educator in {subject}, creating flashcards for specific topics.
Focus on clarity, accuracy, and adherence to the user's preferences: {preference_prompt}
Format code examples with triple backticks (```).
Use the specified JSON output format.
"""
# Generate cards for each topic - Consider parallelization later if needed
for i, topic_info in enumerate(topics): # Use enumerate for proper indexing
topic_name = topic_info.get("name", f"Topic {i + 1}")
logger.info(f"Generating cards for topic: {topic_name}")
try:
cards = generate_cards_batch(
openai_client=openai_client,
cache=cache,
model=model,
topic=topic_name,
num_cards=cards_per_topic,
system_prompt=card_system_prompt,
generate_cloze=generate_cloze,
)
if cards:
flattened_data.extend(
format_cards_for_dataframe(cards, topic_name, topic_index=i)
)
total_cards_generated += len(cards)
gr.Info(
f"β
Generated {len(cards)} cards for {topic_name} (Total: {total_cards_generated})"
)
else:
gr.Warning(
f"β οΈ No cards generated for topic '{topic_name}' (API might have returned empty list)."
)
except Exception as e:
logger.error(
f"Failed during card generation for topic {topic_name}: {e}",
exc_info=True,
)
gr.Warning(
f"Failed to generate cards for '{topic_name}'. Skipping."
)
continue # Continue to the next topic
else:
logger.error(f"Invalid generation mode received: {generation_mode}")
gr.Error(f"Unsupported generation mode selected: {generation_mode}")
return pd.DataFrame(columns=get_dataframe_columns()), "Unsupported mode.", 0
# --- Common Completion Logic ---
logger.info(
f"Card generation orchestration complete. Total cards: {total_cards_generated}"
)
final_html = f"""
<div style="text-align: center">
<p>β
Generation complete!</p>
<p>Total cards generated: {total_cards_generated}</p>
</div>
"""
# Create DataFrame
df = pd.DataFrame(flattened_data, columns=get_dataframe_columns())
return df, final_html, total_cards_generated
except gr.Error as e:
logger.warning(f"A Gradio error was raised and caught: {e}")
raise
except Exception as e:
logger.error(
f"Unexpected error during card generation orchestration: {e}", exc_info=True
)
gr.Error(f"An unexpected error occurred: {e}")
return pd.DataFrame(columns=get_dataframe_columns()), "Unexpected error.", 0
# --- Helper Functions --- (Could be moved to utils or stay here if specific)
def get_cloze_instruction(generate_cloze: bool) -> str:
if not generate_cloze:
return ""
return """
Where appropriate, generate Cloze deletion cards.
- For Cloze cards, set "card_type" to "cloze".
- Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
- The "answer" field should contain the full, non-cloze text or specific context for the cloze.
- For standard question/answer cards, set "card_type" to "basic".
"""
def get_card_json_structure_prompt() -> str:
return """
Return your response as a JSON object with the following structure:
{{
"cards": [
{{
"card_type": "basic or cloze",
"front": {{
"question": "question text (potentially with {{{{c1::cloze syntax}}}})"
}},
"back": {{
"answer": "concise answer or full text for cloze",
"explanation": "detailed explanation",
"example": "practical example"
}},
"metadata": {{
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}}
}}
// ... more cards
]
}}
"""
def process_raw_cards_data(cards_data: list) -> list[Card]:
"""Processes raw card data dicts into a list of Card Pydantic models."""
cards_list = []
for card_data in cards_data:
# Basic validation (can be enhanced)
if (
not isinstance(card_data, dict)
or "front" not in card_data
or "back" not in card_data
):
logger.warning(f"Skipping malformed card data: {card_data}")
continue
try:
card = Card(
card_type=card_data.get("card_type", "basic"),
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {}),
)
cards_list.append(card)
except Exception as e:
logger.warning(
f"Skipping card due to Pydantic validation error: {e} | Data: {card_data}"
)
return cards_list
def format_cards_for_dataframe(
cards: list[Card], topic_name: str, topic_index: int = 0, start_index: int = 1
) -> list:
"""Formats a list of Card objects into a list of lists for the DataFrame."""
formatted_rows = []
for card_idx, card in enumerate(cards, start=start_index):
index_str = (
f"{topic_index + 1}.{card_idx}" if topic_index >= 0 else f"{card_idx}"
)
metadata = card.metadata or {}
row = [
index_str,
topic_name,
card.card_type,
card.front.question,
card.back.answer,
card.back.explanation,
card.back.example,
metadata.get("prerequisites", []),
metadata.get("learning_outcomes", []),
metadata.get("misconceptions", []),
metadata.get("difficulty", "beginner"),
]
formatted_rows.append(row)
return formatted_rows
def get_dataframe_columns() -> list[str]:
"""Returns the standard list of columns for the results DataFrame."""
return [
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
]
|