Spaces:
Runtime error
Runtime error
File size: 13,940 Bytes
3070581 ed9313b 73f9c5b ed9313b 4aaf91a ed9313b 4aaf91a 3070581 ed9313b 0605bc2 4aaf91a 0605bc2 4aaf91a 2d94716 0605bc2 22cc962 f2608fd 22cc962 f2608fd 22cc962 33741fc bfd1e8f 22cc962 bfd1e8f 33741fc dc6b2e4 280e63f bfd1e8f 12e8ac9 4c32c48 4aab74e 12e8ac9 0605bc2 12e8ac9 dd1d609 12e8ac9 4aaf91a 12e8ac9 dd1d609 12e8ac9 0605bc2 22cc962 0605bc2 22cc962 0605bc2 22cc962 0605bc2 4aaf91a 4aab74e 22cc962 4aaf91a dfd1845 0605bc2 4aaf91a 4aab74e 22cc962 4aaf91a 2d94716 4aaf91a 10b507e 4aaf91a 10b507e 4aaf91a 4aab74e 12e8ac9 280e63f 4aaf91a 2d94716 4aaf91a 10b507e 4aaf91a 10b507e 4aaf91a 280e63f 4aab74e 280e63f 4aaf91a 22cc962 280e63f 22cc962 4aaf91a 0605bc2 4aaf91a 0605bc2 22cc962 dfd1845 0605bc2 dfd1845 4aaf91a dfd1845 0605bc2 dfd1845 0605bc2 dfd1845 0605bc2 dfd1845 0605bc2 dfd1845 3070581 12e8ac9 22cc962 12e8ac9 d2ff475 12e8ac9 8d2dd70 d2ff475 0605bc2 22cc962 0605bc2 22cc962 dfd1845 22cc962 dfd1845 22cc962 0605bc2 22cc962 ecec7b8 f7f4627 ecec7b8 22cc962 4c32c48 280e63f 22cc962 ecec7b8 f7f4627 ecec7b8 22cc962 d2ff475 0605bc2 280e63f 12e8ac9 280e63f dfd1845 0605bc2 22cc962 0605bc2 280e63f 12e8ac9 0605bc2 dfd1845 22cc962 0605bc2 dfd1845 0605bc2 280e63f 0605bc2 280e63f 0605bc2 22cc962 280e63f 12e8ac9 280e63f d2ff475 12e8ac9 22cc962 fc039dd 4aaf91a 8d2dd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# based on https://github.com/hwchase17/langchain-gradio-template/blob/master/app.py
import collections
import os
from itertools import islice
from queue import Queue
from anyio.from_thread import start_blocking_portal
import gradio as gr
from diff_match_patch import diff_match_patch
from langchain.chains import LLMChain
from langchain.chat_models import PromptLayerChatOpenAI, ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage
from util import SyncStreamingLLMCallbackHandler, concatenate_generators
GRAMMAR_PROMPT = "Proofread for grammar and spelling without adding new paragraphs:\n{content}"
INTRO_PROMPT = """These are the parts of a good introductory paragraph:
1. Introductory information
2. The stage of human development of the main character
3. Summary of story
4. Thesis statement (this should also provide an overview the essay structure or topics that may be covered in each paragraph)
For each part, put a quote of the sentences from the following paragraph that fulfil that part and say how confident you are (percentage). If you're not confident, explain why.
---
Example output format:
Thesis statement and outline:
"Sentence A. Sentence B"
Score: X%. Feedback goes here.
---
Intro paragraph:
{content}"""
BODY_PROMPT1 = """You are a university English teacher. Complete the following tasks for the following essay paragraph about a book:
1. Topic sentence: Identify the topic sentence and determine whether it introduces an argument
2. Key points: Outline a bullet list of key points
3. Supporting evidence: Give a bullet list of parts of the paragraph that use quotes or other textual evidence from the book
{content}"""
BODY_PROMPT2 = """4. Give advice on how the topic sentence could be made stronger or clearer
5. In a bullet list, state how each key point supports the topic (or if any doesn't support it)
6. In a bullet list for each supporting evidence, state which key point the evidence supports.
"""
BODY_PROMPT3 = """Briefly summarize "{title}". Then, in a bullet list for each supporting evidence you liisted above, state if it describes an event/detail from the "{title}" or if it's from outside sources.
Use this output format:
[summary]
----
- [supporting evidence 1] - book
- [supporting evidence 2] - outside source"""
BODY_DESCRIPTION = """1. identifies the topic sentence
2. outlines key points
3. checks for supporting evidence (e.g., quotes, summaries, and concrete details)
4. suggests topic sentence improvements
5. checks that the key points match the paragraph topic
6. determines which key point each piece of evidence supports
7. checks whether each evidence is from the book or from an outside source"""
def is_empty(s: str):
return len(s) == 0 or s.isspace()
def check_content(s: str):
if is_empty(s):
raise gr.exceptions.Error('Please input some text before running.')
def load_chain(api_key, api_type):
if api_key == "" or api_key.isspace():
if api_type == "OpenAI":
api_key = os.environ.get("OPENAI_API_KEY", None)
elif api_type == "Azure OpenAI":
api_key = os.environ.get("AZURE_OPENAI_API_KEY", None)
else:
raise RuntimeError("Unknown API type? " + api_type)
if api_key:
shared_args = {
"temperature": 0,
"model_name": "gpt-3.5-turbo",
"api_key": api_key, # deliberately not use "openai_api_key" and other openai args since those apply globally
"pl_tags": ["grammar"],
"streaming": True,
}
if api_type == "OpenAI":
llm = PromptLayerChatOpenAI(**shared_args)
elif api_type == "Azure OpenAI":
llm = PromptLayerChatOpenAI(
api_type = "azure",
api_base = os.environ.get("AZURE_OPENAI_API_BASE", None),
api_version = os.environ.get("AZURE_OPENAI_API_VERSION", "2023-03-15-preview"),
engine = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME", None),
**shared_args
)
prompt1 = PromptTemplate(
input_variables=["content"],
template=GRAMMAR_PROMPT
)
chain = LLMChain(llm=llm,
prompt=prompt1,
memory=ConversationBufferMemory())
chain_intro = LLMChain(llm=llm,
prompt=PromptTemplate(
input_variables=["content"],
template=INTRO_PROMPT
),
memory=ConversationBufferMemory())
chain_body1 = LLMChain(llm=llm,
prompt=PromptTemplate(
input_variables=["content"],
template=BODY_PROMPT1
),
memory=ConversationBufferMemory())
return chain, llm, chain_intro, chain_body1
def run_diff(content, chain: LLMChain):
check_content(content)
chain.memory.clear()
edited = chain.run(content)
return diff_words(content, edited) + (edited,)
# https://github.com/hwchase17/langchain/issues/2428#issuecomment-1512280045
def run(content, chain: LLMChain):
check_content(content)
chain.memory.clear()
q = Queue()
job_done = object()
def task():
result = chain.run(content, callbacks=[SyncStreamingLLMCallbackHandler(q)])
q.put(job_done)
return result
with start_blocking_portal() as portal:
portal.start_task_soon(task)
output = ""
while True:
next_token = q.get(True, timeout=10)
if next_token is job_done:
break
output += next_token
yield output
# TODO share code with above
def run_followup(followup_question, input_vars, chain, chat: ChatOpenAI):
check_content(followup_question)
history = [HumanMessage(content=chain.prompt.format(content=m.content)) if isinstance(m, HumanMessage) else m
for m in chain.memory.chat_memory.messages]
prompt = ChatPromptTemplate.from_messages([
*history,
HumanMessagePromptTemplate.from_template(followup_question)])
messages = prompt.format_prompt(**input_vars).to_messages()
q = Queue()
job_done = object()
def task():
result = chat.generate([messages], callbacks=[SyncStreamingLLMCallbackHandler(q)])
q.put(job_done)
return result.generations[0][0].message.content
with start_blocking_portal() as portal:
portal.start_task_soon(task)
output = ""
while True:
next_token = q.get(True, timeout=10)
if next_token is job_done:
break
output += next_token
yield output
def run_body(content, title, chain, llm):
check_content(content) # note: run() also checks, but the error doesn't get shown in the UI?
if not title:
return "Please enter the book title."
yield from concatenate_generators(
run(content, chain),
"\n\n",
run_followup(BODY_PROMPT2, {}, chain, llm),
"\n\n7. Whether supporting evidence is from the book:",
(output.split("----")[-1] for output in run_followup(BODY_PROMPT3, {"title": title}, chain, llm))
)
def run_custom(content, llm, prompt):
chain = LLMChain(llm=llm,
memory=ConversationBufferMemory(),
prompt=PromptTemplate(
input_variables=["content"],
template=prompt
))
return chain.run(content), chain
# not currently used
def split_paragraphs(text):
return [(x, x != "" and not x.startswith("#") and not x.isspace()) for x in text.split("\n")]
def sliding_window(iterable, n):
# sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG
it = iter(iterable)
window = collections.deque(islice(it, n), maxlen=n)
if len(window) == n:
yield tuple(window)
for x in it:
window.append(x)
yield tuple(window)
dmp = diff_match_patch()
def diff_words(content, edited):
before = []
after = []
changes = []
change_count = 0
changed = False
diff = dmp.diff_main(content, edited)
dmp.diff_cleanupSemantic(diff)
diff += [(None, None)]
for [(change, text), (next_change, next_text)] in sliding_window(diff, 2):
if change == 0:
before.append((text, None))
after.append((text, None))
else:
if change == -1 and next_change == 1:
change_count += 1
before.append((text, str(change_count)))
after.append((next_text, str(change_count)))
changes.append((text, next_text))
changed = True
elif change == -1:
before.append((text, "-"))
elif change == 1:
if changed:
changed = False
else:
after.append((text, "+"))
else:
raise Exception("Unknown change type: " + change)
return before, after, changes
def get_parts(arr, start, end):
return "".join(arr[start:end])
CHANGES = {
"-": "remove",
"+": "add",
# "β": "change"
}
def select_diff(evt: gr.SelectData, changes):
text, change = evt.value
if not change:
return
change_text = CHANGES.get(change, None)
if change_text:
return f"Why is it better to {change_text} [{text}]?"
# if change == "β":
else:
# clicked = evt.target
# if clicked.label == "Before":
# original = text
# else:
# edited = text
original, edited = changes[int(change) - 1]
# original, edited = text.split("β")
return f"Why is it better to change [{original}] to [{edited}]?"
demo = gr.Blocks(css="""
.diff-component {
white-space: pre-wrap;
}
.diff-component .textspan.hl {
white-space: normal;
}
""")
with demo:
# api_key = gr.Textbox(
# placeholder="Paste your OpenAPI API key here (sk-...)",
# show_label=False,
# lines=1,
# type="password"
# )
api_key = gr.State("")
gr.HTML("""<div style="display: flex; justify-content: center; align-items: center"><a href="https://thinkcol.com/"><img src="./file=thinkcol-logo.png" alt="ThinkCol" width="357" height="87" /></a></div>""")
gr.Markdown("""Paste a paragraph below, and then choose one of the modes to generate feedback.""")
content = gr.Textbox(
label="Paragraph"
)
with gr.Tab("Grammar/Spelling"):
gr.Markdown("Suggests grammar and spelling revisions.")
submit = gr.Button(
value="Revise",
).style(full_width=False)
with gr.Row():
output_before = gr.HighlightedText(
label="Before",
combine_adjacent=True,
elem_classes="diff-component"
).style(color_map={
"-": "red",
# "β": "yellow",
})
output_after = gr.HighlightedText(
label="After",
combine_adjacent=True,
elem_classes="diff-component"
).style(color_map={
"+": "green",
# "β": "yellow",
})
followup_question = gr.Textbox(
label="Follow-up Question",
)
followup_submit = gr.Button(
value="Ask"
).style(full_width=False)
followup_answer = gr.Textbox(
label="Answer"
)
with gr.Tab("Intro"):
gr.Markdown("Checks for the key components of an introductory paragraph.")
submit_intro = gr.Button(
value="Run"
).style(full_width=False)
output_intro = gr.Textbox(
label="Output",
lines=1000,
max_lines=1000
)
with gr.Tab("Body Paragraph"):
gr.Markdown(BODY_DESCRIPTION)
title = gr.Textbox(
label="Book Title"
)
submit_body = gr.Button(
value="Run"
).style(full_width=False)
output_body = gr.Textbox(
label="Output",
lines=1000,
max_lines=1000
)
# with gr.Tab("Custom prompt"):
# gr.Markdown("This mode is for testing and debugging.")
# prompt = gr.Textbox(
# label="Prompt",
# value=GRAMMAR_PROMPT,
# lines=2
# )
# submit_custom = gr.Button(
# value="Run"
# ).style(full_width=False)
# output_custom = gr.Textbox(
# label="Output"
# )
# followup_custom = gr.Textbox(
# label="Follow-up Question"
# )
# followup_answer_custom = gr.Textbox(
# label="Answer"
# )
with gr.Tab("Settings"):
api_type = gr.Radio(
["OpenAI", "Azure OpenAI"],
value="OpenAI",
label="Server",
info="You can try changing this if responses are slow."
)
changes = gr.State()
edited = gr.State()
chain = gr.State()
llm = gr.State()
chain_intro = gr.State()
chain_body1 = gr.State()
chain_custom = gr.State()
# api_key.change(load_chain, [api_key, api_type], [chain, llm, chain_intro, chain_body1])
api_type.change(load_chain, [api_key, api_type], [chain, llm, chain_intro, chain_body1])
inputs = [content, chain]
outputs = [output_before, output_after, changes, edited]
# content.submit(run_diff, inputs=inputs, outputs=outputs)
submit.click(run_diff, inputs=inputs, outputs=outputs)
output_before.select(select_diff, changes, followup_question)
output_after.select(select_diff, changes, followup_question)
empty_input = gr.State({})
inputs2 = [followup_question, empty_input, chain, llm]
outputs2 = followup_answer
followup_question.submit(run_followup, inputs2, outputs2)
followup_submit.click(run_followup, inputs2, outputs2)
submit_intro.click(run, [content, chain_intro], output_intro)
submit_body.click(run_body, [content, title, chain_body1, llm], output_body) # body part A only
# submit_custom.click(run_custom, [content, llm, prompt], [output_custom, chain_custom]) # TODO standardize api--return memory instead of using chain?
# followup_custom.submit(run_followup, [followup_custom, empty_input, chain_custom, llm], followup_answer_custom)
demo.load(load_chain, [api_key, api_type], [chain, llm, chain_intro, chain_body1])
port = os.environ.get("SERVER_PORT", None)
if port:
port = int(port)
demo.queue()
demo.launch(debug=True, server_port=port, prevent_thread_lock=True)
|