File size: 6,342 Bytes
e2160a6
 
bff1c38
e2160a6
56dd0de
38c7953
e525714
d1bb2c2
56dd0de
711fa9a
bff1c38
e525714
 
711fa9a
55fa117
0492353
e525714
7565e99
342f262
e2160a6
596e4a5
d174eab
342f262
 
e525714
013786a
79fe17b
d174eab
 
6e51693
342f262
e2160a6
e525714
342f262
e525714
342f262
 
 
 
 
 
 
e525714
342f262
e525714
342f262
 
e525714
 
342f262
 
e525714
342f262
e525714
 
 
 
 
 
 
 
342f262
 
 
e525714
 
 
 
 
342f262
e525714
93033c9
 
 
e525714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d174eab
e525714
 
 
 
 
 
342f262
e525714
 
 
 
 
 
342f262
e525714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342f262
e525714
 
 
 
 
 
 
 
 
 
 
d174eab
342f262
e2160a6
 
e525714
342f262
e525714
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import random
import spaces
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import AutoPipelineForText2Image


device = "cuda" #if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")
pipe.to(device)
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"

MAX_SEED = np.iinfo(np.int32).max

@spaces.GPU(enable_queue=True)
def predict(prompt, ip_adapter_images, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Optionally resize images if center crop is not selected
    if not center_crop:
        ip_adapter_images = [image.resize((224, 224)) for image in ip_adapter_images]
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe.set_ip_adapter_scale([ip_adapter_scale])
    
    image = pipe(
        prompt=prompt,
        ip_adapter_image=[ip_adapter_image],
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    ["high quality", "example1.png", 1.0, "", 1000, False, False, 1152, 896],
    ["capybara", "example2.png", 0.7, "", 1000, False, False, 1152, 896],
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
#result img{
    object-position: top;
}
#result .image-container{
    height: 100%
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Bria's Image-Prompt-Adapter
        """)
                
        with gr.Row():
            with gr.Column():
                # ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery").style(grid=[2], preview=True)
                ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery", show_label=True)#.style(grid=[2])

                ip_adapter_scale = gr.Slider(
                    label="Image Input Scale",
                    info="Use 1 for creating image variations",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=1.0,
                )
            with gr.Column():
                result = gr.Image(label="Result", elem_id="result",  format="png")
                prompt = gr.Text(
                    label="Prompt",
                    show_label=True,
                    lines=1,
                    placeholder="Enter your prompt",
                    container=True,
                    info='For image variation, leave empty or try a prompt like: "high quality".'
                )
            
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=2048,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=2048,
                step=32,
                value=1024,
            )
            run_button = gr.Button("Run", scale=0)
            

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=1000,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.")            
            # with gr.Row():
            #     width = gr.Slider(
            #         label="Width",
            #         minimum=256,
            #         maximum=2048,
            #         step=32,
            #         value=1024,
            #     )
            #     height = gr.Slider(
            #         label="Height",
            #         minimum=256,
            #         maximum=2048,
            #         step=32,
            #         value=1024,
            #     )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=25,
                )
            
        
        # gr.Examples(
        #     examples=examples,
        #     fn=predict,
        #     inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height],
        #     outputs=[result, seed],
        #     cache_examples="lazy"
        # )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=predict,
        inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue(max_size=25,api_open=False).launch(show_api=False)

# image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)