File size: 5,531 Bytes
5028f2c
9643b26
 
 
5028f2c
 
 
 
 
 
 
 
018a675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5028f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
018a675
 
 
 
 
 
 
 
 
5028f2c
018a675
 
 
 
 
 
5028f2c
 
 
 
 
 
 
b388c40
5028f2c
 
 
d115497
5028f2c
 
22b3efc
d115497
 
5028f2c
 
 
 
 
 
 
 
b388c40
5028f2c
d115497
5028f2c
1801f11
5028f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e087bc1
5028f2c
c80757c
 
 
 
5028f2c
c80757c
 
5028f2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import spaces
from diffusers import ControlNetModel
from diffusers import StableDiffusionXLControlNetPipeline
from diffusers import EulerAncestralDiscreteScheduler
from PIL import Image
import torch
import numpy as np
import cv2
import gradio as gr
from torchvision import transforms 
from controlnet_aux import OpenposeDetector

ratios_map =  {
    0.5:{"width":704,"height":1408},
    0.57:{"width":768,"height":1344},
    0.68:{"width":832,"height":1216},
    0.72:{"width":832,"height":1152},
    0.78:{"width":896,"height":1152},
    0.82:{"width":896,"height":1088},
    0.88:{"width":960,"height":1088},
    0.94:{"width":960,"height":1024},
    1.00:{"width":1024,"height":1024},
    1.13:{"width":1088,"height":960},
    1.21:{"width":1088,"height":896},
    1.29:{"width":1152,"height":896},
    1.38:{"width":1152,"height":832},
    1.46:{"width":1216,"height":832},
    1.67:{"width":1280,"height":768},
    1.75:{"width":1344,"height":768},
    2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))


openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

controlnet = ControlNetModel.from_pretrained(
    "briaai/BRIA-2.3-ControlNet-Pose",
    torch_dtype=torch.float16
).to('cuda')

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "briaai/BRIA-2.3",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    offload_state_dict=True,
).to('cuda').to(torch.float16)

pipe.scheduler = EulerAncestralDiscreteScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    steps_offset=1
)
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False

def get_size(init_image):
    w,h=init_image.size
    curr_ratio = w/h
    ind = np.argmin(np.abs(curr_ratio-ratios))
    ratio = ratios[ind]
    chosen_ratio  = ratios_map[ratio]
    w,h = chosen_ratio['width'], chosen_ratio['height']
    return w,h

def resize_image(image):
    image = image.convert('RGB')
    w,h = get_size(image)
    resized_image = image.resize((w, h))
    return resized_image
    
def resize_image_old(image):
    image = image.convert('RGB')
    current_size = image.size
    if current_size[0] > current_size[1]:
        center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
    else:
        center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
    resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
    return resized_image


@spaces.GPU
def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed):
    generator = torch.Generator("cuda").manual_seed(seed)    
    images = pipe(
    prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
    generator=generator, height=input_image.size[1], width=input_image.size[0],
    ).images 
    return images

@spaces.GPU
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
    
    # resize input_image to 1024x1024
    input_image = resize_image(input_image)
    
    pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
  
    images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed)

    return [pose_image,images[0]]
    
block = gr.Blocks().queue()

with block:
    gr.Markdown("## BRIA 2.3 ControlNet Pose")
    gr.HTML('''
      <p style="margin-bottom: 10px; font-size: 94%">
        This is a demo for ControlNet Pose that using
        <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone. 
        Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
      </p>
    ''')
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
            num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
            controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
            seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
            run_button = gr.Button(value="Run")
                        
        with gr.Column():
            with gr.Row():
                pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
                generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)

    ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
    run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output])


block.launch(debug = True)