File size: 4,846 Bytes
c2f35d3
 
 
 
3c9e8c2
c2f35d3
 
 
 
 
 
4072488
c13a51c
30d0900
99044ca
fd7054f
9280b9e
fd7054f
99044ca
fd7054f
 
 
 
 
2a47c9d
c2f35d3
15b4028
 
 
 
 
 
 
 
 
 
c2f35d3
15b4028
 
 
 
 
 
 
c2f35d3
15b4028
c2f35d3
 
bf3ec4d
c2f35d3
 
 
 
 
 
 
818ca9e
c13a51c
818ca9e
 
c13a51c
 
 
 
 
818ca9e
d74685a
 
03b0c3f
c2f35d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9280b9e
1510fcd
 
 
9280b9e
15b4028
 
 
 
 
6a81da2
1510fcd
 
c2f35d3
 
5a6be21
c13a51c
818ca9e
c2f35d3
5cc5619
c2f35d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
818ca9e
 
 
c2f35d3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import os
hf_token = os.environ.get("HF_TOKEN")
import spaces
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderKL
import torch
import time

class Dummy():
    pass

resolutions = ["1024 1024","1280 768","1344 768","768 1344","768 1280" ] 

# Load pipeline 

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained("briaai/BRIA-2.2-FAST", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.2", torch_dtype=torch.float16, unet=unet, vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
del unet
del vae


pipe.force_zeros_for_empty_prompt = False

# print("Optimizing BRIA 2.2 FAST - this could take a while")
# t=time.time()
# pipe.unet = torch.compile(
#     pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation
# )
# with torch.no_grad():
#     outputs = pipe(
#         prompt="an apple",
#         num_inference_steps=8,
#     )

#     # This will avoid future compilations on different shapes
#     unet_compiled = torch._dynamo.run(pipe.unet)
#     unet_compiled.config=pipe.unet.config
#     unet_compiled.add_embedding = Dummy()
#     unet_compiled.add_embedding.linear_1 = Dummy()
#     unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features
#     pipe.unet = unet_compiled

# print(f"Optimizing finished successfully after {time.time()-t} secs")

@spaces.GPU(enable_queue=True)
def infer(prompt,seed,resolution):
    print(f"""
    —/n
    {prompt}
    """)
    
    # generator = torch.Generator("cuda").manual_seed(555)
    t=time.time()

    if seed=="-1":
        generator=None
    else:
        try:
            seed=int(seed)
            generator = torch.Generator("cuda").manual_seed(seed)
        except:
            generator=None

    w,h = resolution.split()
    w,h = int(w),int(h)
    image = pipe(prompt,num_inference_steps=8,generator=generator,width=w,height=h).images[0]
    print(f'gen time is {time.time()-t} secs')
    
    # Future
    # Add amound of steps
    # if nsfw:
    #     raise gr.Error("Generated image is NSFW")
    
    return image

css = """
#col-container{
    margin: 0 auto;
    max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA 2.2 FAST")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-2.2-FAST" target="_blank">BRIA 2.2 FAST </a>. 
            This is a fast version of BRIA 2.3 text-to-image model, still trained on licensed data, and so provides full legal liability coverage for copyright and privacy infringement.
            Running time is 1.6s on A10 GPU. A demo for the newer version of BRIA-2.3 is also available <a href="https://huggingface.co/spaces/briaai/BRIA-2.3" target="_blank">HERE </a>. 
            You can also try it for free in our <a href="https://labs.bria.ai/" target="_blank">webapp demo </a>.
            Are you a startup or a student? We encourage you to apply for our 
            <a href="https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..)  target="_blank">Startup Plan  </a>
            This program are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
          </p>
        ''')
        with gr.Group():
            with gr.Column():
                prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard")
                resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions)
                seed = gr.Textbox(label="Seed", value=-1)
                submit_btn = gr.Button("Generate")
        result = gr.Image(label="BRIA 2.2 FAST Result")

        # gr.Examples(
        #     examples = [ 
        #         "Dragon, digital art, by Greg Rutkowski",
        #         "Armored knight holding sword",
        #         "A flat roof villa near a river with black walls and huge windows",
        #         "A calm and peaceful office",
        #         "Pirate guinea pig"
        #     ],
        #     fn = infer, 
        #     inputs = [
        #         prompt_in
        #     ],
        #     outputs = [
        #         result
        #     ]
        # )

    submit_btn.click(
        fn = infer,
        inputs = [
            prompt_in,
            seed,
            resolution
        ],
        outputs = [
            result
        ]
    )

demo.queue().launch(show_api=False)