Spaces:
Running
Running
File size: 10,000 Bytes
5315596 3f327ed 5315596 3f327ed 5315596 3f327ed 5315596 9d54244 5315596 3f327ed 5315596 3f327ed 5315596 9d54244 5315596 2122d2f f4f2127 2122d2f b36dea2 2122d2f 4e9a192 2122d2f 5315596 2122d2f 5315596 2122d2f 5315596 3f327ed 5315596 3f327ed 5315596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# coding: utf-8
# Copyright (C) 2023, [Breezedeus](https://github.com/breezedeus).
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import sys
import logging
from typing import List
import yaml
import gradio as gr
from PIL import Image
import numpy as np
from datasets import load_dataset
import chromadb
from chromadb import Settings
from coin_clip.utils import resize_img
from coin_clip.chroma_embedding import ChromaEmbeddingFunction
from coin_clip.detect import Detector
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
env = os.environ.get('COIN_ENV', 'local')
if env == 'hf':
config_fp = 'hf_config.yaml'
hf_token = os.environ.get('HF_TOKEN')
else:
config_fp = 'local_config.yaml'
logger.info(f'Use config file: {config_fp}')
total_config = yaml.safe_load(open(config_fp))
DETECTOR = Detector(
model_name=total_config['detector']['model_name'],
device=total_config['detector']['device'],
)
# USE_REMOVE_BG = total_config['use_remove_bg']
RESIZED_TO_BEFORE_DETECT = total_config['detector'].get('resized_to', 300)
def prepare_chromadb():
if env == 'local':
return
from huggingface_hub import snapshot_download
snapshot_download(
repo_type='model',
repo_id='breezedeus/usa-coins-chromadb',
local_dir='./',
token=hf_token,
)
def _load_dataset(data_path):
logger.info('Load dataset from %s', data_path)
if env == 'hf':
dataset = load_dataset(data_path, split='train', token=hf_token)
else:
dataset = load_dataset("imagefolder", data_dir=data_path, split='train')
return dataset
def detect(images):
outs = []
for idx, img in enumerate(images):
img = resize_img(img, RESIZED_TO_BEFORE_DETECT)
out = DETECTOR.detect(np.array(img))
if not out:
out = {'position': None, 'scores': 0.0}
else:
out = out[0]
out.pop('label')
out['position'] = out.pop('box')
out['from_image_idx'] = idx
outs.append(out)
box_images = []
for out, img in zip(outs, images):
if out['position'] is None:
box_images.append(None)
else:
# box 比例值转化为绝对位置值
w, h = img.size
box = out['position']
box = (int(box[0] * w), int(box[1] * h), int(box[2] * w), int(box[3] * h))
box_images.append(img.crop(box))
return outs, box_images
def load_chroma_db(db_dir, collection_name, model_name, device='cpu'):
logger.info('Load chroma db from %s', db_dir)
client = chromadb.PersistentClient(
path=db_dir, settings=Settings(anonymized_telemetry=False)
)
embedding_function = ChromaEmbeddingFunction(model_name, device)
collection = client.get_collection(
name=collection_name, embedding_function=embedding_function,
)
return collection
def retrieve(query_image: Image.Image, collection, top_k=20) -> List[Image.Image]:
query_image = np.array(query_image)
retrieved = collection.query(
query_images=[query_image], include=['metadatas', 'distances'], n_results=top_k,
)
logger.info('retrieved ids: %s', retrieved['ids'][0])
logger.info('retrieved distances: %s', retrieved['distances'][0])
return [ds_dict[id]['image'] for id in retrieved['ids'][0]]
dataset = _load_dataset(**total_config['dataset'])
ds_dict = {_d['id']: _d for _d in dataset}
prepare_chromadb()
cc_collection = load_chroma_db(**total_config['coin_clip_db'])
clip_collection = load_chroma_db(**total_config['clip_db'])
def search(image_file: Image.Image):
images = [image_file.convert('RGB')]
detected_outs, box_images = detect(images)
box_images = [img for img in box_images if img is not None]
if len(box_images) == 0:
return [
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
]
box_image = box_images[0]
# breakpoint()
cc_results = retrieve(box_image, cc_collection, top_k=30)
clip_results = retrieve(box_image, clip_collection, top_k=30)
return [
gr.update(value=box_image, visible=True),
gr.update(visible=False),
gr.update(value=cc_results, visible=True),
gr.update(value=clip_results, visible=True),
]
def main():
title = 'USA Coin Retrieval by'
# desc = (
# '<p style="text-align: center">Coin-CLIP: '
# '<a href="https://huggingface.co/breezedeus/coin-clip-vit-base-patch32" target="_blank">Model</a>, '
# '<a href="https://github.com/breezedeus/coin-clip" target="_blank">Github</a>; '
# 'Author: <a href="https://www.breezedeus.com" target="_blank">Breezedeus</a> , '
# '<a href="https://github.com/breezedeus" target="_blank">Github</a> </p>'
# )
desc = """
<div align="center">
<img src="https://www.notion.so/image/https%3A%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F9341931a-53f0-48e1-b026-0f1ad17b457c%2F003ffb61-964f-4e1a-bfc1-6a8516fc90ac%2FUntitled.png?table=block&id=553ac3c2-1f88-450a-b06a-8ebb4001b29f" width="120px"/>
[![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbreezedeus%2FUSA-Coin-Retrieval&labelColor=%23697689&countColor=%23f5c791&style=flat&labelStyle=upper)](https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbreezedeus%2FUSA-Coin-Retrieval)
| | |
| ------------------------------- | --------------------------------------- |
| 🪙 **Model** | [Coin-CLIP](https://huggingface.co/breezedeus/coin-clip-vit-base-patch32) |
| 💼 **Code** | [Github](https://github.com/breezedeus/coin-clip) |
| 👨🏻💻 **Author** | [Breezedeus](https://www.breezedeus.com) |
| 💬 **Questions** | [GitHub Discussions](https://github.com/breezedeus/coin-clip/issues) |
<br/>
Leave a star 🌟 on the Github [Coin-CLIP 🪙](https://github.com/breezedeus/coin-clip) .
If you're interested in retrieving coins from other countries, please leave a comment on the Github.
</div>
"""
examples = [
'examples/c2.jpeg',
'examples/c20.jpg',
'examples/c21.jpg',
'examples/c22.png',
'examples/c1.jpg',
'examples/c11.jpg',
'examples/c3.png',
'examples/c4.jpg',
'examples/c5.jpeg',
'examples/c6.jpeg',
'examples/c7.jpg',
'examples/c8.jpeg',
]
with gr.Blocks() as demo:
gr.Markdown(
f'<h1 style="text-align: center; margin-bottom: 1rem;">{title} <a href="https://github.com/breezedeus/coin-clip" target="_blank">Coin-CLIP</a></h1>'
)
with gr.Row(equal_height=False):
with gr.Column(variant='compact', scale=3):
# gr.HTML('<img src="examples/coin-clip-logo.jpg" width="150px"/>')
gr.Markdown(desc)
with gr.Column(variant='compact', scale=7):
gr.Markdown('### Image within a coin')
image_file = gr.Image(
label='Coin Image to Search',
type="pil",
image_mode='RGB',
height=400,
)
sub_btn = gr.Button("Submit", variant="primary")
with gr.Column(variant='compact', scale=4):
gr.Markdown('### Detected Coin')
detected_image = gr.Image(
label='Detected Coin',
type="pil",
interactive=False,
image_mode='RGB',
height=400,
)
no_detect_warn = gr.Markdown(
'**⚠️ Warning**: No coins detected in image', visible=False
)
with gr.Row(equal_height=False):
with gr.Column(variant='compact', scale=1):
gr.Markdown('### Results from Coin-CLIP')
cc_results = gr.Gallery(
label='Coin-CLIP Results',
columns=3,
height=2200,
show_share_button=True,
visible=False,
)
with gr.Column(variant='compact', scale=1):
gr.Markdown('### Results from CLIP')
coin_results = gr.Gallery(
label='CLIP Results',
columns=3,
height=2200,
show_share_button=True,
visible=False,
)
sub_btn.click(
search,
inputs=[image_file,],
outputs=[detected_image, no_detect_warn, cc_results, coin_results],
)
gr.Examples(
label='Examples',
examples=examples,
inputs=image_file,
outputs=[detected_image, no_detect_warn, cc_results, coin_results],
fn=search,
examples_per_page=12,
cache_examples=True,
)
demo.queue(max_size=20)
demo.launch()
if __name__ == '__main__':
main()
|