Spaces:
Runtime error
Runtime error
File size: 1,837 Bytes
b089452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-1.3b")
model = AutoModelForCausalLM.from_pretrained("facebook/galactica-1.3b")
text2text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, num_workers=2)
def predict(text, max_length=64, penalty_alpha=0.6, top_k=4):
text = text.strip()
out_text = text2text_generator(text, max_length=max_length,
penalty_alpha=penalty_alpha,
top_k=top_k,
eos_token_id = tokenizer.eos_token_id,
bos_token_id = tokenizer.bos_token_id,
pad_token_id = tokenizer.pad_token_id,
)[0]['generated_text']
out_text = "<p>" + out_text + "</p>"
out_text = out_text.replace(text, text + "<b><span>")
out_text = out_text + "</span></b>"
out_text = out_text.replace("\n", "<br>")
return out_text
iface = gr.Interface(
fn=predict,
inputs=[
gr.inputs.Textbox(lines=5, label="Input Text"),
gr.inputs.Slider(minimum=32, maximum=64, default=64, label="Max Length"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.6, step=0.1, label="Penalty Alpha"),
# gr.inputs.Checkbox(label="Do Sample"),
gr.inputs.Slider(minimum=0, maximum=16, default=8, step=1, label="Top K")
],
outputs=gr.HTML(),
description="Galactica Base Model",
examples=[[
"The attention mechanism in LLM is",
32,
0.6,
4
],
[
"Title: Attention is all you need\n\nAbstract:",
32,
0.6,
4
]
]
)
iface.launch() |