File size: 6,341 Bytes
8f825da
17e462b
 
 
 
 
 
8f825da
db13789
17e462b
 
 
 
 
 
 
 
db13789
17e462b
 
 
8f825da
17e462b
 
 
db13789
 
17e462b
 
 
db13789
17e462b
 
 
 
 
 
 
 
 
db13789
17e462b
 
 
 
 
 
 
 
db13789
 
 
 
 
17e462b
db13789
17e462b
 
db13789
17e462b
db13789
17e462b
db13789
17e462b
db13789
17e462b
db13789
17e462b
db13789
17e462b
db13789
 
 
17e462b
db13789
17e462b
db13789
17e462b
 
 
 
 
 
db13789
17e462b
 
db13789
17e462b
db13789
 
 
17e462b
db13789
17e462b
db13789
17e462b
db13789
17e462b
 
db13789
17e462b
 
db13789
17e462b
 
db13789
17e462b
 
 
db13789
17e462b
 
 
 
 
 
db13789
 
17e462b
db13789
17e462b
 
 
 
db13789
17e462b
 
db13789
17e462b
db13789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e462b
 
db13789
 
 
 
 
 
 
 
17e462b
 
db13789
17e462b
 
 
 
db13789
17e462b
 
 
db13789
17e462b
 
 
db13789
 
17e462b
db13789
17e462b
 
 
 
 
 
db13789
17e462b
 
 
 
db13789
17e462b
 
 
8f825da
 
 
 
 
 
 
 
db13789
8f825da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from flask import Flask, render_template, request, Response, jsonify
import cv2
import os
import numpy as np
import pickle
from datetime import datetime

# --- Flask App ---
app = Flask(__name__)

FACE_DATA_DIR = 'face_data'
FACE_CASCADE_PATH = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'

if not os.path.exists(FACE_DATA_DIR):
    os.makedirs(FACE_DATA_DIR)

face_cascade = cv2.CascadeClassifier(FACE_CASCADE_PATH)

camera = None
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
is_trained = False
has_webcam = os.path.exists("/dev/video0")  # deteksi webcam di server

def load_face_data():
    global is_trained
    faces, labels, names = [], [], []

    if os.path.exists(os.path.join(FACE_DATA_DIR, 'names.pkl')):
        with open(os.path.join(FACE_DATA_DIR, 'names.pkl'), 'rb') as f:
            names = pickle.load(f)

    for idx, name in enumerate(names):
        face_dir = os.path.join(FACE_DATA_DIR, name)
        if os.path.exists(face_dir):
            for filename in os.listdir(face_dir):
                if filename.endswith('.jpg'):
                    img_path = os.path.join(face_dir, filename)
                    img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
                    faces.append(img)
                    labels.append(idx)

    if faces:
        face_recognizer.train(faces, np.array(labels))
        is_trained = True
        return names
    return []

def get_camera():
    global camera
    if has_webcam:
        if camera is None:
            camera = cv2.VideoCapture(0)
        return camera
    return None

@app.route('/')
def index():
    names = load_face_data()
    return render_template('index.html', registered_faces=names, has_webcam=has_webcam)

@app.route('/register')
def register():
    return render_template('register.html', has_webcam=has_webcam)

@app.route('/recognize')
def recognize():
    return render_template('recognize.html', has_webcam=has_webcam)

@app.route('/video_feed')
def video_feed():
    if not has_webcam:
        return "Webcam tidak tersedia di server ini", 404

    def generate():
        cam = get_camera()
        while True:
            success, frame = cam.read()
            if not success:
                break
            ret, buffer = cv2.imencode('.jpg', frame)
            frame = buffer.tobytes()
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

    return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/recognition_feed')
def recognition_feed():
    if not has_webcam:
        return "Webcam tidak tersedia di server ini", 404

    def generate():
        cam = get_camera()
        names = load_face_data()

        while True:
            success, frame = cam.read()
            if not success:
                break

            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            faces = face_cascade.detectMultiScale(gray, 1.3, 5)

            for (x, y, w, h) in faces:
                cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)

                if is_trained and names:
                    roi_gray = gray[y:y+h, x:x+w]
                    roi_gray = cv2.resize(roi_gray, (100, 100))

                    id_, confidence = face_recognizer.predict(roi_gray)
                    if confidence < 100:
                        name = names[id_]
                        confidence_text = f"{name} ({round(100-confidence)}%)"
                    else:
                        confidence_text = "Unknown"

                    cv2.putText(frame, confidence_text, (x, y-10),
                              cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)

            ret, buffer = cv2.imencode('.jpg', frame)
            frame = buffer.tobytes()
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

    return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/capture_face', methods=['POST'])
def capture_face():
    if has_webcam:
        name = request.json.get('name', '').strip()
        if not name:
            return jsonify({'error': 'Nama tidak boleh kosong'})

        cam = get_camera()
        success, frame = cam.read()
        if not success:
            return jsonify({'error': 'Gagal mengambil gambar dari kamera'})

        return save_face(name, frame)
    else:
        return jsonify({'error': 'Webcam tidak tersedia, gunakan /upload_face'})

@app.route('/upload_face', methods=['POST'])
def upload_face():
    name = request.form.get('name', '').strip()
    file = request.files.get('file')

    if not name:
        return jsonify({'error': 'Nama tidak boleh kosong'})
    if not file:
        return jsonify({'error': 'File tidak ditemukan'})

    np_img = np.frombuffer(file.read(), np.uint8)
    frame = cv2.imdecode(np_img, cv2.IMREAD_COLOR)
    return save_face(name, frame)

def save_face(name, frame):
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    if len(faces) == 0:
        return jsonify({'error': 'Tidak ada wajah yang terdeteksi'})
    if len(faces) > 1:
        return jsonify({'error': 'Terdeteksi lebih dari satu wajah'})

    (x, y, w, h) = faces[0]
    face_roi = gray[y:y+h, x:x+w]
    face_roi = cv2.resize(face_roi, (100, 100))

    person_dir = os.path.join(FACE_DATA_DIR, name)
    if not os.path.exists(person_dir):
        os.makedirs(person_dir)

    filename = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.jpg"
    cv2.imwrite(os.path.join(person_dir, filename), face_roi)

    names_file = os.path.join(FACE_DATA_DIR, 'names.pkl')
    if os.path.exists(names_file):
        with open(names_file, 'rb') as f:
            names = pickle.load(f)
    else:
        names = []

    if name not in names:
        names.append(name)
        with open(names_file, 'wb') as f:
            pickle.dump(names, f)

    load_face_data()
    return jsonify({'success': f'Wajah {name} berhasil didaftarkan'})

# --- Wrapper untuk Hugging Face ---
from fastapi import FastAPI
from starlette.middleware.wsgi import WSGIMiddleware

flask_app = app
asgi_app = FastAPI()
asgi_app.mount("/", WSGIMiddleware(flask_app))

if __name__ == '__main__':
    flask_app.run(debug=True, host='0.0.0.0', port=5000)