File size: 5,346 Bytes
68ed9a2
 
 
 
1613f96
 
 
 
 
 
 
 
7592671
1613f96
 
 
 
 
 
 
 
5a908b8
 
1613f96
 
 
 
 
 
 
6bf4f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7592671
6bf4f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7592671
6bf4f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613f96
 
6bf4f4e
 
 
 
 
 
 
 
7592671
6bf4f4e
 
 
 
 
 
 
 
 
 
 
 
1613f96
 
 
 
6bf4f4e
1613f96
 
 
6bf4f4e
1613f96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501

import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.utils import get_model_name_from_filepath


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    all_data_json = [v.to_dict() for v in raw_data]

    df = pd.DataFrame.from_records(all_data_json)
    # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df.sort_values(by=[AutoEvalColumn.solbench.name], ascending=False)
    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


# def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]:
#     """Creates the different dataframes for the evaluation requestss requestes"""
#     entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
#     all_evals = []

#     for entry in entries:
#         if ".json" in entry:
#             file_path = os.path.join(save_path, entry)
#             try:
#                 with open(file_path, encoding='utf-8') as fp:
#                     data = json.load(fp)
#             except UnicodeDecodeError as e:
#                 print(f"Unicode decoding error in {file_path}: {e}")
#                 continue

#             # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
#             model_name = get_model_name_from_filepath(file_path)
#             data[EvalQueueColumn.model.name] = make_clickable_model(model_name)

#             data[EvalQueueColumn.revision.name] = data.get("revision", "main")

#             all_evals.append(data)

#         elif ".md" not in entry:
#             # this is a folder
#             sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
#             for sub_entry in sub_entries:
#                 file_path = os.path.join(save_path, entry, sub_entry)
#                 try:
#                     with open(file_path, encoding='utf-8') as fp:
#                         data = json.load(fp)
#                 except json.JSONDecodeError:
#                     print(f"Error reading {file_path}")
#                     continue
#                 except UnicodeDecodeError as e:
#                     print(f"Unicode decoding error in {file_path}: {e}")
#                     continue

#                 # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
#                 model_name = get_model_name_from_filepath(file_path)
#                 data[EvalQueueColumn.model.name] = make_clickable_model(model_name)

#                 data[EvalQueueColumn.revision.name] = data.get("revision", "main")
#                 all_evals.append(data)

#     pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
#     running_list = [e for e in all_evals if e["status"] == "RUNNING"]
#     finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
#     df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
#     df_running = pd.DataFrame.from_records(running_list, columns=cols)
#     df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
#     return df_finished[cols], df_running[cols], df_pending[cols]

def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation requestss requested."""
    all_evals = []

    def process_file(file_path):
        try:
            with open(file_path, 'r', encoding='utf-8') as fp:
                data = json.load(fp)
        except (json.JSONDecodeError, UnicodeDecodeError) as e:
            print(f"Error reading or decoding {file_path}: {e}")
            return None

        model_name = get_model_name_from_filepath(file_path)
        # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
        data[EvalQueueColumn.model.name] = make_clickable_model(model_name)
        data[EvalQueueColumn.revision.name] = data.get("revision", "main")
        return data

    for root, _, files in os.walk(save_path):
        for file in files:
            if file.endswith('.json'):
                file_path = os.path.join(root, file)
                data = process_file(file_path)
                if data:
                    all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]

    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)

    return df_finished[cols], df_running[cols], df_pending[cols]