File size: 5,316 Bytes
68ed9a2
 
 
 
f8e2509
1613f96
f8e2509
1613f96
 
 
 
 
827199d
1613f96
68ed9a2
1613f96
 
 
 
0296a03
 
1613f96
 
 
f8e2509
 
 
 
 
1613f96
f8e2509
 
 
68ed9a2
0296a03
f8e2509
0296a03
 
 
 
5a908b8
 
f8e2509
68ed9a2
f8e2509
6c58865
1613f96
6c58865
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e2509
 
6c58865
 
f8e2509
6c58865
 
 
 
 
1ed5d75
6c58865
 
 
f8e2509
 
 
 
0296a03
 
1613f96
f8e2509
0296a03
 
68ed9a2
6bf4f4e
0296a03
 
1613f96
 
 
 
6bf4f4e
 
 
 
1613f96
827199d
68ed9a2
1613f96
 
 
 
827199d
1613f96
 
 
6bf4f4e
 
827199d
 
1613f96
6bf4f4e
1613f96
 
 
 
6bf4f4e
1613f96
6bf4f4e
1613f96
6bf4f4e
aaed00b
1613f96
 
827199d
1613f96
 
 
 
 
68ed9a2
1613f96
 
 
0296a03
 
 
6bf4f4e
1613f96
0296a03
1613f96
 
 
 
 
0296a03
 
 
 
 
 
1613f96
 
68ed9a2
1613f96
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501

from dataclasses import dataclass, field, make_dataclass
from enum import Enum
from functools import partial

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if not k.startswith("__") and not k.endswith("__")]

# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed


@dataclass
class ColumnContent:
    name: str
    type: str = field(default='str')
    displayed_by_default: bool = field(default=False)
    hidden: bool = field(default=False)
    never_hidden: bool = field(default=False)


# Helper function to create a ColumnContent with default_factory
def create_column_content(name, type='str', displayed_by_default=False, hidden=False, never_hidden=False):
    return field(default_factory=lambda: ColumnContent(name, type, displayed_by_default, hidden, never_hidden))


auto_eval_column_dict = [
    ("model_type_symbol", ColumnContent, create_column_content(
        "", "str", True, never_hidden=True)),
    ("model", ColumnContent, create_column_content(
        "Model", "markdown", True, never_hidden=True)),
    ("solbench", ColumnContent, create_column_content("Score", "number", True)),
    # ("average", ColumnContent, create_column_content("Average", "number", True)),
]

# Add task-specific columns
remaining_tasks_to_display = 2
for task in Tasks:
    displayed_by_default = True
    if remaining_tasks_to_display > 0:
        remaining_tasks_to_display -= 1
    else:
        displayed_by_default = False
    auto_eval_column_dict.append((
        task.name,
        ColumnContent,
        create_column_content(
            task.value.col_name,
            "number",
            displayed_by_default,
        ),
    ))

# Add model information columns
hide = True
display = True
model_info_columns = [
    ("model_type", "Type", "str", not display, hide),
    ("architecture", "Architecture", "str", not display, not hide),
    ("weight_type", "Weight type", "str", not display, hide),
    ("precision", "Precision", "str", not display, not hide),
    ("license", "License", "str", not display, not hide),
    ("params", "Parameters (billions)", "number", not display, not hide),
    ("likes", "Likes", "number", not display, hide),
    ("still_on_hub", "HuggingFace Hub", "bool", not display, hide),
    ("revision", "Revision", "str", not display, not hide),
]

for col_name, display_name, col_type, displayed_by_default, *args in model_info_columns:
    hidden = args[0] if args else False
    auto_eval_column_dict.append((col_name, ColumnContent, create_column_content(
        display_name, col_type, displayed_by_default, hidden)))

# Create the AutoEvalColumn dataclass
AutoEvalColumn = make_dataclass(
    "AutoEvalColumn", auto_eval_column_dict, frozen=True)()

# For the requests columns in the submission tab


@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    # private = ColumnContent("private", "bool", True)
    # precision = ColumnContent("precision", "str", True)
    # weight_type = ColumnContent("weight_type", "str", "Original")
    # status = ColumnContent("status", "str", True)


# All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="πŸ’Ž")
    FT = ModelDetails(name="finetuned", symbol="πŸ’")
    BrainDAO = ModelDetails(name="braindao", symbol="🧠")
    Unknown = ModelDetails(name="", symbol="❓")

    def to_str(self, separator="  "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "finetuned" in type or "πŸ’" in type:
            return ModelType.FT
        if "pretrained" in type or "πŸ’Ž" in type:
            return ModelType.PT
        if "braindao" in type or "🧠" in type:
            return ModelType.BrainDAO
        return ModelType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("Unknown")

    @staticmethod
    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit"]:
            return Precision.qt_8bit
        if precision in ["4bit"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]