File size: 7,442 Bytes
9073a3e
5dcfddf
 
 
 
 
6e40433
3bc69df
5dcfddf
f9fc2f5
6e40433
 
 
 
5dcfddf
 
 
9073a3e
 
 
 
 
3bc69df
5dcfddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e40433
 
 
070e964
6e40433
 
 
 
 
 
 
 
5dcfddf
6e40433
 
 
 
5dcfddf
4bcf26d
 
 
 
 
 
5dcfddf
 
4bcf26d
5dcfddf
 
 
 
 
 
 
4bcf26d
5dcfddf
 
 
6e40433
5dcfddf
4bcf26d
5dcfddf
 
 
 
 
d269684
5dcfddf
 
 
 
 
 
 
 
 
 
 
9073a3e
7b58bd5
 
 
 
 
 
 
876b33e
9569883
f0b749f
 
9569883
 
3bc69df
5dcfddf
7b58bd5
6e40433
 
5dcfddf
 
ae2e41b
6e40433
 
 
 
4bcf26d
985bfcb
9073a3e
f9fc2f5
d269684
7b58bd5
ae2e41b
d269684
7adba7d
ae2e41b
4bcf26d
ae2e41b
4bcf26d
6e40433
0a0eb91
9073a3e
5dcfddf
985bfcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcfddf
 
9073a3e
5dcfddf
4bcf26d
 
5dcfddf
 
 
 
 
 
 
4bcf26d
5dcfddf
 
 
 
3bc69df
5dcfddf
 
 
 
 
 
7b58bd5
985bfcb
 
 
4bcf26d
 
 
 
 
5dcfddf
 
 
 
 
7b58bd5
985bfcb
 
3bc69df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# app.py
import gradio as gr
import whisper
import json
import shutil
import os
import uuid
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration, pipeline
from opencc import OpenCC

# === 模型變數初始化(懶載入)===
whisper_model = None
m2m_model = None
m2m_tokenizer = None
m2m_model_name = "facebook/m2m100_418M"
cc = OpenCC("s2t")  # 簡轉繁

# ✅ 使用穩定可用的中文潤飾模型
refiner = pipeline(
    "text2text-generation",
    model="uer/pegasus-base-chinese-cluecorpussmall"
)

# === 語言對照表 ===
lang_map = {
    "自動偵測": None,
    "中文": "zh",
    "英文": "en",
    "日文": "ja",
    "法文": "fr",
    "西班牙文": "es",
    "德文": "de",
    "義大利文": "it",
    "葡萄牙文": "pt"
}

target_langs = {
    "繁體中文": "zh",
    "英文": "en",
    "日文": "ja",
    "法文": "fr",
    "西班牙文": "es",
    "德文": "de",
    "義大利文": "it",
    "葡萄牙文": "pt"
}

def lazy_load_models():
    global whisper_model, m2m_model, m2m_tokenizer
    if whisper_model is None:
        whisper_model = whisper.load_model("medium")
    if m2m_model is None:
        m2m_model = M2M100ForConditionalGeneration.from_pretrained(m2m_model_name)
    if m2m_tokenizer is None:
        m2m_tokenizer = M2M100Tokenizer.from_pretrained(m2m_model_name)

def get_lang_label(code):
    return next((label for label, c in lang_map.items() if c == code), "未知")

def format_timestamp(seconds):
    return f"{int(seconds//3600):02}:{int((seconds%3600)//60):02}:{int(seconds%60):02},{int((seconds-int(seconds))*1000):03}"

def break_line(text, max_len=40):
    return '\n'.join([text[i:i+max_len] for i in range(0, len(text), max_len)])

def export_files(text, translation, lang, segments, uid):
    txt_path = f"transcript_{uid}.txt"
    json_path = f"transcript_{uid}.json"
    srt_path = f"transcript_{uid}.srt"

    with open(txt_path, "w", encoding="utf-8") as f:
        f.write(f"語言:{lang}\n\n原文:\n{text}\n\n翻譯:\n{translation}")

    with open(json_path, "w", encoding="utf-8") as f:
        json.dump({
            "language": lang,
            "transcript": text,
            "translation": translation,
            "segments": segments
        }, f, ensure_ascii=False, indent=2)

    with open(srt_path, "w", encoding="utf-8") as f:
        for i, seg in enumerate(segments):
            start = format_timestamp(seg["start"])
            end = format_timestamp(seg["end"])
            f.write(f"{i+1}\n{start} --> {end}\n{break_line(seg['text'])}\n\n")

    return txt_path, json_path, srt_path

def translate_text(text, detected_lang, target_lang_label):
    try:
        src_lang = detected_lang if detected_lang in target_langs.values() else "en"
        tgt_lang = target_langs.get(target_lang_label, "zh")

        m2m_tokenizer.src_lang = src_lang
        encoded = m2m_tokenizer(text, return_tensors="pt")
        generated = m2m_model.generate(
            **encoded,
            forced_bos_token_id=m2m_tokenizer.get_lang_id(tgt_lang)
        )
        translated = m2m_tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
        return cc.convert(translated) if tgt_lang == "zh" else translated
    except Exception as e:
        return f"(⚠️ 翻譯失敗:{str(e)})"

# === Session Memory ===
last_uid = ""
last_original_text = ""

def refine_translation_from_original():
    global last_original_text
    if not last_original_text.strip():
        return "⚠️ 尚未產生可潤飾的原文"
    prompt = f"請將以下內容在不改變原來意思之下,潤飾為更通順自然的中文:\n{last_original_text}"
    try:
        result = refiner(prompt, max_length=512, do_sample=False)
        return result[0]["generated_text"]
    except Exception as e:
        return f"(⚠️ 潤飾錯誤:{str(e)})"

def transcribe_and_translate(audio_path, lang_label, target_lang_label):
    global last_uid, last_original_text
    lazy_load_models()

    if not audio_path or not os.path.isfile(audio_path):
        return "⚠️ 請先錄音或上傳語音檔", "", "", None, None, None, None

    ext_allowed = ['.wav', '.mp3', '.m4a']
    if not any(audio_path.lower().endswith(ext) for ext in ext_allowed):
        return "⚠️ 僅支援 wav, mp3, m4a 格式音訊檔", "", "", None, None, None, None

    uid = uuid.uuid4().hex[:8]
    last_uid = uid
    lang_code = lang_map.get(lang_label)
    result = whisper_model.transcribe(audio_path, language=lang_code)
    text = result["text"]
    last_original_text = text
    detected_lang = result["language"]
    segments = result.get("segments", [])

    translation = translate_text(text, detected_lang, target_lang_label)
    txt, jsonf, srt = export_files(text, translation, detected_lang, segments, uid)

    audio_filename = f"audio_{uid}.wav"
    shutil.copy(audio_path, audio_filename)

    return text, get_lang_label(detected_lang), translation, txt, jsonf, srt, audio_filename

def delete_current_session_files():
    global last_uid
    if not last_uid:
        return "⚠️ 尚未產生可刪除的檔案"
    deleted = []
    for suffix in [".txt", ".json", ".srt"]:
        path = f"transcript_{last_uid}{suffix}"
        if os.path.exists(path):
            os.remove(path)
            deleted.append(path)
    audio_path = f"audio_{last_uid}.wav"
    if os.path.exists(audio_path):
        os.remove(audio_path)
        deleted.append(audio_path)
    return f"✅ 已刪除 {len(deleted)} 筆檔案"

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("## 🎤 Whisper + 多語翻譯 + 中文潤飾")

    recording_ready = gr.State(False)

    with gr.Row():
        audio_input = gr.Audio(label="🎙️ 上傳或錄音語音檔", type="filepath")

    with gr.Row():
        lang_dropdown = gr.Dropdown(label="語音語言(可自動偵測)", choices=list(lang_map.keys()), value="自動偵測")
        target_lang_dropdown = gr.Dropdown(label="翻譯目標語言", choices=list(target_langs.keys()), value="繁體中文")

    start_btn = gr.Button("🚀 開始辨識與翻譯", interactive=False)

    original_text = gr.Textbox(label="📝 語音辨識原文", lines=12)
    detected_lang = gr.Textbox(label="🌐 偵測語言")
    translated_text = gr.Textbox(label="🌸 翻譯結果", lines=8)
    refined_text = gr.Textbox(label="🌟 潤飾後內容", lines=8)

    file_txt = gr.File(label="📄 TXT")
    file_json = gr.File(label="📄 JSON")
    file_srt = gr.File(label="🎬 SRT 字幕")
    file_audio = gr.File(label="🔊 原始音訊下載")

    refine_btn = gr.Button("✨ 潤飾語音辨識原文")
    clear_btn = gr.Button("🧹 刪除本次產生檔案")
    clear_result = gr.Textbox(label="🧾 系統訊息")

    def audio_uploaded(_):
        return gr.update(interactive=True), True

    audio_input.change(fn=audio_uploaded, inputs=[audio_input], outputs=[start_btn, recording_ready])

    start_btn.click(fn=transcribe_and_translate,
                    inputs=[audio_input, lang_dropdown, target_lang_dropdown],
                    outputs=[original_text, detected_lang, translated_text,
                             file_txt, file_json, file_srt, file_audio])

    refine_btn.click(fn=refine_translation_from_original, inputs=[], outputs=[refined_text])
    clear_btn.click(fn=delete_current_session_files, inputs=[], outputs=[clear_result])

    demo.launch()