Spaces:
bpheng
/
Runtime error

File size: 2,904 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright (c) Facebook, Inc. and its affiliates.
import torch

from densepose.structures.data_relative import DensePoseDataRelative


class DensePoseList:

    _TORCH_DEVICE_CPU = torch.device("cpu")

    def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU):
        assert len(densepose_datas) == len(
            boxes_xyxy_abs
        ), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format(
            len(densepose_datas), len(boxes_xyxy_abs)
        )
        self.densepose_datas = []
        for densepose_data in densepose_datas:
            assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, (
                "Attempt to initialize DensePoseList with DensePose datas "
                "of type {}, expected DensePoseDataRelative".format(type(densepose_data))
            )
            densepose_data_ondevice = (
                densepose_data.to(device) if densepose_data is not None else None
            )
            self.densepose_datas.append(densepose_data_ondevice)
        self.boxes_xyxy_abs = boxes_xyxy_abs.to(device)
        self.image_size_hw = image_size_hw
        self.device = device

    def to(self, device):
        if self.device == device:
            return self
        return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device)

    def __iter__(self):
        return iter(self.densepose_datas)

    def __len__(self):
        return len(self.densepose_datas)

    def __repr__(self):
        s = self.__class__.__name__ + "("
        s += "num_instances={}, ".format(len(self.densepose_datas))
        s += "image_width={}, ".format(self.image_size_hw[1])
        s += "image_height={})".format(self.image_size_hw[0])
        return s

    def __getitem__(self, item):
        if isinstance(item, int):
            densepose_data_rel = self.densepose_datas[item]
            return densepose_data_rel
        elif isinstance(item, slice):
            densepose_datas_rel = self.densepose_datas[item]
            boxes_xyxy_abs = self.boxes_xyxy_abs[item]
            return DensePoseList(
                densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
            )
        elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool):
            densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0]
            boxes_xyxy_abs = self.boxes_xyxy_abs[item]
            return DensePoseList(
                densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
            )
        else:
            densepose_datas_rel = [self.densepose_datas[i] for i in item]
            boxes_xyxy_abs = self.boxes_xyxy_abs[item]
            return DensePoseList(
                densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
            )