Spaces:
Running
Running
File size: 9,877 Bytes
b182afd 1c6d55d b182afd 1c6d55d 9e4aab9 1ed88c3 1c6d55d fd71a7a b182afd 1c6d55d 605a986 1c6d55d a246870 1c6d55d 06b4546 1c6d55d c94c38d 1c6d55d b182afd 2916d58 30c2633 cb09ce6 30c2633 765f337 30c2633 e701d13 765f337 eab7ed9 8f0d64b 30c2633 8f0d64b e701d13 30c2633 01ef3bc 864023f 30c2633 a246870 1c6d55d a246870 1c6d55d a246870 1c6d55d b182afd 1c6d55d 7422514 9e4aab9 1c6d55d b182afd 1c6d55d b182afd 1c6d55d 30c2633 d410a83 30c2633 e701d13 1c6d55d 30c2633 1c6d55d 30c2633 765f337 30c2633 eab7ed9 1c6d55d a246870 b182afd e701d13 1c6d55d b182afd 30c2633 4596351 c8f0900 35e9319 c8f0900 35e9319 c8f0900 30c2633 c8f0900 35e9319 c8f0900 35e9319 c8f0900 35e9319 c8f0900 35e9319 c8f0900 35e9319 c8f0900 4596351 35e9319 1c6d55d 8e7f358 1c6d55d 8e7f358 1c6d55d 8e7f358 1c6d55d 8e7f358 1c6d55d 39f3047 1c6d55d b182afd 1c6d55d b182afd 30c346e 9ae69bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import pandas as pd
import os
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from uploads import add_new_eval
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@article{wei2024evaluating,
title={Evaluating Copyright Takedown Methods for Language Models},
author={Wei, Boyi and Shi, Weijia and Huang, Yangsibo and Smith, Noah A and Zhang, Chiyuan and Zettlemoyer, Luke and Li, Kai and Henderson, Peter},
journal={arXiv preprint arXiv:2406.18664},
year={2024}
}"""
api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
LEADERBOARD_PATH = f"boyiwei/CoTaEval_leaderboard"
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
def format_floats(x):
if isinstance(x, float):
return f"{x:.3f}"
return x
# Function to load data from a given CSV file
def baseline_load_data(model, dataset, setting, criteria):
file_path = f'versions/{model}_{dataset}_{setting}_{criteria}.csv' # Replace with your file paths
df = pd.read_csv(file_path)
df = df.applymap(format_floats)
# we only want specific columns and in a specific order
if dataset == 'news':
column_names = ["model_name","method","rouge1","rougeL","semantic_sim","LCS(character)","LCS(word)","ACS(word)","Levenshtein Distance","Minhash Similarity",
"MMLU","MT-Bench","Blocklisted F1","In-Domain F1","Efficiency"]
elif dataset == 'books':
column_names = ["model_name","method","bleu","rouge1","rougeL","semantic_sim","LCS(character)","LCS(word)","ACS(word)","Levenshtein Distance","Minhash Similarity",
"MMLU","MT-Bench","Blocklisted rougeL","In-Domain rougeL","Efficiency"
]
df = df[column_names]
return df
def update_dropdowns(setting, dataset, model, criteria):
updates = {
"setting": gr.update(interactive=True),
"dataset": gr.update(interactive=True),
"model": gr.update(interactive=True),
"criteria": gr.update(interactive=True),
}
if setting == "memorization":
updates["dataset"] = gr.update(value="news", interactive=False)
updates["model"] = gr.update(value="llama2-7b-chat-hf-newsqa", interactive=False)
elif dataset == "books":
updates["setting"] = gr.update(value="rag", interactive=False)
if model == "llama2-7b-chat-hf-newsqa":
updates["model"] = gr.update(value="llama2-7b-chat-hf", interactive=True)
elif model == "llama2-7b-chat-hf-newsqa":
updates["setting"] = gr.update(value="memorization", interactive=False)
updates["dataset"] = gr.update(value="news", interactive=False)
elif model != "llama2-7b-chat-hf-newsqa":
updates["setting"] = gr.update(value="rag", interactive=False)
return updates["model"], updates["dataset"], updates["setting"], updates["criteria"]
def load_data(model, dataset, setting, criteria):
baseline_df = baseline_load_data(model, dataset, setting, criteria)
# now for every file in "versions/{model}-{version}/*.csv"
# if file name is not "model-version.csv", load the file and append it to the dataframe
# version = version.replace("%", "p")
# for file in os.listdir(f'versions/{model}-{version}'):
# if file == f"{model}-{version}.csv":
# continue
# df = pd.read_csv(f'versions/{model}-{version}/{file}')
# df = df[baseline_df.columns]
# baseline_df = pd.concat([baseline_df, df])
return baseline_df
# Function for searching in the leaderboard
def search_leaderboard(df, query):
if query == "":
return df
else:
return df[df['Method'].str.contains(query)]
# Function to change the version of the leaderboard
def change_version(model, dataset, setting, criteria):
new_df = load_data(model, dataset, setting, criteria)
return new_df
# Initialize Gradio app
demo = gr.Blocks()
with demo:
gr.Markdown("""
## ๐ฅ CoTaEval Leaderboard
CoTaEval is a benchmark to evaluate the feasibility and side effects of copyright takedown methods for language models.
Project website: [https://cotaeval.github.io/](https://cotaeval.github.io/).
""")
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
) #.style(show_copy_button=True)
with gr.Tabs():
with gr.TabItem("Leaderboard"):
with gr.Row():
setting_dropdown = gr.Dropdown(
choices = ["rag", "memorization"],
label="๐ Select Setting",
value="rag",
)
dataset_dropdown = gr.Dropdown(
choices = ['news', 'books'],
label="๐ Select Dataset",
value="news",
)
model_dropdown = gr.Dropdown(
choices=["llama2-7b-chat-hf", "llama2-70b-chat-hf", "dbrx-instruct", "llama2-7b-chat-hf-newsqa"],
label="๐ Select Model",
value="llama2-7b-chat-hf",
)
criteria_dropdown = gr.Dropdown(
choices=['mean', 'max'],
label = "๐ Select Criteria",
value = 'mean',
)
leaderboard_table = gr.components.Dataframe(
value=load_data("llama2-7b-chat-hf", "news", "rag", "mean"),
interactive=True,
visible=True,
)
# setting_dropdown.change(
# update_dropdowns,
# inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
# outputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown]
# )
# dataset_dropdown.change(
# update_dropdowns,
# inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
# outputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown]
# )
# model_dropdown.change(
# update_dropdowns,
# inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
# outputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown]
# )
setting_dropdown.change(
change_version,
inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
outputs=leaderboard_table
)
dataset_dropdown.change(
change_version,
inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
outputs=leaderboard_table
)
model_dropdown.change(
change_version,
inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
outputs=leaderboard_table
)
criteria_dropdown.change(
change_version,
inputs=[model_dropdown, dataset_dropdown, setting_dropdown, criteria_dropdown],
outputs=leaderboard_table
)
# with gr.Accordion("Submit a new model for evaluation"):
# with gr.Row():
# with gr.Column():
# method_name_textbox = gr.Textbox(label="Method name")
# #llama, phi
# model_family_radio = gr.Radio(["llama", "phi"], value="llama", label="Model family")
# forget_rate_radio = gr.Radio(["1%", "5%", "10%"], value="10%", label="Forget rate")
# url_textbox = gr.Textbox(label="Url to model information")
# with gr.Column():
# organisation = gr.Textbox(label="Organisation")
# mail = gr.Textbox(label="Contact email")
# file_output = gr.File()
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# method_name_textbox,
# model_family_radio,
# forget_rate_radio,
# url_textbox,
# file_output,
# organisation,
# mail
# ],
# submission_result,
# )
gr.Markdown("""
## Links
- [**Website**](https://cotaeval.github.io): The website for CoTaEval Project.
- [**GitHub Repository**](https://github.com/boyiwei/CoTaEval): For source code of evaluating the takedown methods with CoTaEval.
- [**Datasets**](https://huggingface.co/datasets/boyiwei/CoTaEval): Dataset for evaluation and unlearning.
This leaderboard is based on the design of the [TOFU Leaderboard](https://huggingface.co/spaces/locuslab/tofu_leaderboard).
""")
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()
# demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
custom_css = """
<style>
select {
max-width: 200px; /* ๆ นๆฎ้่ฆ่ฐๆด่ฟไธชๅผ */
}
option {
white-space: normal;
}
</style>
"""
# demo.launch(debug=True, custom_css=custom_css)
demo.launch(debug=True)
|