Spaces:
Runtime error
Runtime error
File size: 7,793 Bytes
6962fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os, sys
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
import re
import torch
import LangSegment
from typing import Dict, List, Tuple
from text.cleaner import clean_text
from text import cleaned_text_to_sequence
from transformers import AutoModelForMaskedLM, AutoTokenizer
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
def get_first(text:str) -> str:
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def merge_short_text_in_array(texts:str, threshold:int) -> list:
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if (len(text) > 0):
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
class TextPreprocessor:
def __init__(self, bert_model:AutoModelForMaskedLM,
tokenizer:AutoTokenizer, device:torch.device):
self.bert_model = bert_model
self.tokenizer = tokenizer
self.device = device
def preprocess(self, text:str, lang:str, text_split_method:str)->List[Dict]:
print(i18n("############ 切分文本 ############"))
texts = self.pre_seg_text(text, lang, text_split_method)
result = []
print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(texts):
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
if phones is None:
continue
res={
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
result.append(res)
return result
def pre_seg_text(self, text:str, lang:str, text_split_method:str):
text = text.strip("\n")
if (text[0] not in splits and len(get_first(text)) < 4):
text = "。" + text if lang != "en" else "." + text
print(i18n("实际输入的目标文本:"))
print(text)
if text_split_method.startswith("auto_cut"):
try:
max_word_count = int(text_split_method.split("_")[-1])
except:
max_word_count = 20
if max_word_count < 5 or max_word_count > 1000:
max_word_count = 20
text_split_method = "auto_cut"
seg_method = get_seg_method(text_split_method)
text = seg_method(text, max_word_count)
else:
seg_method = get_seg_method(text_split_method)
text = seg_method(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
_texts = text.split("\n")
_texts = merge_short_text_in_array(_texts, 5)
texts = []
for text in _texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if (text[-1] not in splits): text += "。" if lang != "en" else "."
# 解决句子过长导致Bert报错的问题
if (len(text) > 510):
texts.extend(split_big_text(text))
else:
texts.append(text)
print(i18n("实际输入的目标文本(切句后):"))
print(texts)
return texts
def segment_and_extract_feature_for_text(self, texts:list, language:str)->Tuple[list, torch.Tensor, str]:
textlist, langlist = self.seg_text(texts, language)
if len(textlist) == 0:
return None, None, None
phones, bert_features, norm_text = self.extract_bert_feature(textlist, langlist)
return phones, bert_features, norm_text
def seg_text(self, text:str, language:str)->Tuple[list, list]:
textlist=[]
langlist=[]
if language in ["auto", "zh", "ja"]:
LangSegment.setfilters(["zh","ja","en","ko"])
for tmp in LangSegment.getTexts(text):
if tmp["text"] == "":
continue
if tmp["lang"] == "ko":
langlist.append("zh")
elif tmp["lang"] == "en":
langlist.append("en")
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language if language!="auto" else tmp["lang"])
textlist.append(tmp["text"])
elif language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
while " " in formattext:
formattext = formattext.replace(" ", " ")
if formattext != "":
textlist.append(formattext)
langlist.append("en")
elif language in ["all_zh","all_ja"]:
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
language = language.replace("all_","")
if text == "":
return [],[]
textlist.append(formattext)
langlist.append(language)
else:
raise ValueError(f"language {language} not supported")
return textlist, langlist
def extract_bert_feature(self, textlist:list, langlist:list):
phones_list = []
bert_feature_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang)
_bert_feature = self.get_bert_inf(phones, word2ph, norm_text, lang)
# phones_list.append(phones)
phones_list.extend(phones)
norm_text_list.append(norm_text)
bert_feature_list.append(_bert_feature)
bert_feature = torch.cat(bert_feature_list, dim=1)
# phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones_list, bert_feature, norm_text
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
with torch.no_grad():
inputs = self.tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(self.device)
res = self.bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def clean_text_inf(self, text:str, language:str):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
language=language.replace("all_","")
if language == "zh":
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
else:
feature = torch.zeros(
(1024, len(phones)),
dtype=torch.float32,
).to(self.device)
return feature
|