Spaces:
Sleeping
Sleeping
File size: 1,559 Bytes
34f0c5f b920e42 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 1a8a49f 34f0c5f 5c00058 b920e42 1a8a49f 34f0c5f b920e42 1a8a49f 5c00058 34f0c5f b920e42 34f0c5f b920e42 34f0c5f b920e42 34f0c5f b920e42 34f0c5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageDraw
# Load object detection pipeline
model_pipeline = pipeline(
task="object-detection",
model="bortle/autotrain-ap-obj-detector-2"
)
def predict(image):
width = 1080
ratio = width / image.width
height = int(image.height * ratio)
image = image.resize((width, height))
detections = model_pipeline(image, threshold=0.9)
draw = ImageDraw.Draw(image)
table_rows = []
for det in detections:
box = det["box"]
label = det["label"]
score = round(det["score"], 4)
table_rows.append([
label,
f"{score:.2%}",
int(box["xmin"]),
int(box["ymin"]),
int(box["xmax"]),
int(box["ymax"])
])
table_rows.sort(key=lambda x: float(x[1].strip('%')), reverse=True)
draw.rectangle(
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
outline="red",
width=3
)
draw.text((box["xmin"] + 4, box["ymin"] - 12), f"{label} ({score:.2f})", fill="red")
return image, table_rows
# Gradio Interface
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload Astrophotography Image"),
outputs=[
gr.Image(type="pil", label="Detected Objects"),
gr.Dataframe(headers=["Class", "Confidence", "Xmin", "Ymin", "Xmax", "Ymax"], label="Detections")
],
title="Astrophotography Object Detector",
allow_flagging="manual",
).launch()
|