File size: 1,283 Bytes
bdab1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import numpy as np


def get_mel_from_wav(audio, _stft):
    audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
    audio = torch.autograd.Variable(audio, requires_grad=False)
    melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
    melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
    log_magnitudes_stft = (
        torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
    )
    energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
    return melspec, log_magnitudes_stft, energy


# def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
#     mel = torch.stack([mel])
#     mel_decompress = _stft.spectral_de_normalize(mel)
#     mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
#     spec_from_mel_scaling = 1000
#     spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
#     spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
#     spec_from_mel = spec_from_mel * spec_from_mel_scaling

#     audio = griffin_lim(
#         torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
#     )

#     audio = audio.squeeze()
#     audio = audio.cpu().numpy()
#     audio_path = out_filename
#     write(audio_path, _stft.sampling_rate, audio)