File size: 11,191 Bytes
11120b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the MIT License.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# MIT License for more details.

import math
import torch
from einops import rearrange

from model.base import BaseModule


class Mish(BaseModule):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Upsample(BaseModule):
    def __init__(self, dim):
        super(Upsample, self).__init__()
        self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Downsample(BaseModule):
    def __init__(self, dim):
        super(Downsample, self).__init__()
        self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Rezero(BaseModule):
    def __init__(self, fn):
        super(Rezero, self).__init__()
        self.fn = fn
        self.g = torch.nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return self.fn(x) * self.g


class Block(BaseModule):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(torch.nn.Conv2d(dim, dim_out, 3, 
                                         padding=1), torch.nn.GroupNorm(
                                         groups, dim_out), Mish())

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask


class ResnetBlock(BaseModule):
    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
        super(ResnetBlock, self).__init__()
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, 
                                                               dim_out))

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
        else:
            self.res_conv = torch.nn.Identity()

    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
        return output


class LinearAttention(BaseModule):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)            

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', 
                            heads = self.heads, qkv=3)            
        k = k.softmax(dim=-1)
        context = torch.einsum('bhdn,bhen->bhde', k, v)
        out = torch.einsum('bhde,bhdn->bhen', context, q)
        out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', 
                        heads=self.heads, h=h, w=w)
        return self.to_out(out)


class Residual(BaseModule):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        output = self.fn(x, *args, **kwargs) + x
        return output


class SinusoidalPosEmb(BaseModule):
    def __init__(self, dim):
        super(SinusoidalPosEmb, self).__init__()
        self.dim = dim

    def forward(self, x, scale=1000):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
        emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class GradLogPEstimator2d(BaseModule):
    def __init__(self, dim, dim_mults=(1, 2, 4), groups=8,
                 n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
        super(GradLogPEstimator2d, self).__init__()
        self.dim = dim
        self.dim_mults = dim_mults
        self.groups = groups
        self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
        self.spk_emb_dim = spk_emb_dim
        self.pe_scale = pe_scale
        
        if n_spks > 1:
            self.spk_mlp = torch.nn.Sequential(torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(),
                                               torch.nn.Linear(spk_emb_dim * 4, n_feats))
        self.time_pos_emb = SinusoidalPosEmb(dim)
        self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(),
                                       torch.nn.Linear(dim * 4, dim))

        dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))
        self.downs = torch.nn.ModuleList([])
        self.ups = torch.nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
            self.downs.append(torch.nn.ModuleList([
                       ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
                       ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
                       Residual(Rezero(LinearAttention(dim_out))),
                       Downsample(dim_out) if not is_last else torch.nn.Identity()]))

        mid_dim = dims[-1]
        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
        self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            self.ups.append(torch.nn.ModuleList([
                     ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
                     ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
                     Residual(Rezero(LinearAttention(dim_in))),
                     Upsample(dim_in)]))
        self.final_block = Block(dim, dim)
        self.final_conv = torch.nn.Conv2d(dim, 1, 1)

    def forward(self, x, mask, mu, t, spk=None):
        if not isinstance(spk, type(None)):
            s = self.spk_mlp(spk)
        
        t = self.time_pos_emb(t, scale=self.pe_scale)
        t = self.mlp(t)

        if self.n_spks < 2:
            x = torch.stack([mu, x], 1)
        else:
            s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
            x = torch.stack([mu, x, s], 1)
        mask = mask.unsqueeze(1)

        hiddens = []
        masks = [mask]
        for resnet1, resnet2, attn, downsample in self.downs:
            mask_down = masks[-1]
            x = resnet1(x, mask_down, t)
            x = resnet2(x, mask_down, t)
            x = attn(x)
            hiddens.append(x)
            x = downsample(x * mask_down)
            masks.append(mask_down[:, :, :, ::2])

        masks = masks[:-1]
        mask_mid = masks[-1]
        x = self.mid_block1(x, mask_mid, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, mask_mid, t)

        for resnet1, resnet2, attn, upsample in self.ups:
            mask_up = masks.pop()
            x = torch.cat((x, hiddens.pop()), dim=1)
            x = resnet1(x, mask_up, t)
            x = resnet2(x, mask_up, t)
            x = attn(x)
            x = upsample(x * mask_up)

        x = self.final_block(x, mask)
        output = self.final_conv(x * mask)

        return (output * mask).squeeze(1)


def get_noise(t, beta_init, beta_term, cumulative=False):
    if cumulative:
        noise = beta_init*t + 0.5*(beta_term - beta_init)*(t**2)
    else:
        noise = beta_init + (beta_term - beta_init)*t
    return noise


class Diffusion(BaseModule):
    def __init__(self, n_feats, dim,
                 n_spks=1, spk_emb_dim=64,
                 beta_min=0.05, beta_max=20, pe_scale=1000):
        super(Diffusion, self).__init__()
        self.n_feats = n_feats
        self.dim = dim
        self.n_spks = n_spks
        self.spk_emb_dim = spk_emb_dim
        self.beta_min = beta_min
        self.beta_max = beta_max
        self.pe_scale = pe_scale
        
        self.estimator = GradLogPEstimator2d(dim, n_spks=n_spks,
                                             spk_emb_dim=spk_emb_dim,
                                             pe_scale=pe_scale)

    def forward_diffusion(self, x0, mask, mu, t):
        time = t.unsqueeze(-1).unsqueeze(-1)
        cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
        mean = x0*torch.exp(-0.5*cum_noise) + mu*(1.0 - torch.exp(-0.5*cum_noise))
        variance = 1.0 - torch.exp(-cum_noise)
        z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device, 
                        requires_grad=False)
        xt = mean + z * torch.sqrt(variance)
        return xt * mask, z * mask

    @torch.no_grad()
    def reverse_diffusion(self, z, mask, mu, n_timesteps, stoc=False, spk=None):
        h = 1.0 / n_timesteps
        xt = z * mask
        for i in range(n_timesteps):
            t = (1.0 - (i + 0.5)*h) * torch.ones(z.shape[0], dtype=z.dtype, 
                                                 device=z.device)
            time = t.unsqueeze(-1).unsqueeze(-1)
            noise_t = get_noise(time, self.beta_min, self.beta_max, 
                                cumulative=False)
            if stoc:  # adds stochastic term
                dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk)
                dxt_det = dxt_det * noise_t * h
                dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
                                       requires_grad=False)
                dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
                dxt = dxt_det + dxt_stoc
            else:
                dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk))
                dxt = dxt * noise_t * h
            xt = (xt - dxt) * mask
        return xt

    @torch.no_grad()
    def forward(self, z, mask, mu, n_timesteps, stoc=False, spk=None):
        return self.reverse_diffusion(z, mask, mu, n_timesteps, stoc, spk)

    def loss_t(self, x0, mask, mu, t, spk=None):
        xt, z = self.forward_diffusion(x0, mask, mu, t)
        time = t.unsqueeze(-1).unsqueeze(-1)
        cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
        noise_estimation = self.estimator(xt, mask, mu, t, spk)
        noise_estimation *= torch.sqrt(1.0 - torch.exp(-cum_noise))
        loss = torch.sum((noise_estimation + z)**2) / (torch.sum(mask)*self.n_feats)
        return loss, xt

    def compute_loss(self, x0, mask, mu, spk=None, offset=1e-5):
        t = torch.rand(x0.shape[0], dtype=x0.dtype, device=x0.device,
                       requires_grad=False)
        t = torch.clamp(t, offset, 1.0 - offset)
        return self.loss_t(x0, mask, mu, t, spk)