Spaces:
Runtime error
Runtime error
File size: 6,184 Bytes
11120b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech\r\n",
"\r\n",
"Official implementation of the Grad-TTS model based on Diffusion Probabilistic Models. For all details check out our paper accepted to ICML 2021 via [this](https://arxiv.org/abs/2105.06337) link.\r\n",
"\r\n",
"You can listen to the samples on our demo page via [this](https://grad-tts.github.io/) link.\r\n",
"\r\n",
"You can access Google Colab demo notebook via [this](https://colab.research.google.com/drive/1YNrXtkJQKcYDmIYJeyX8s5eXxB4zgpZI?usp=sharing) link.\r\n",
"\r\n",
"**Authors**: Vadim Popov\\*, Ivan Vovk\\*, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov.\r\n",
"\r\n",
"<sup>\\*Equal contribution.</sup>\r\n",
"\r\n",
"**Note**: for fast synthesis prefer running inference on GPU device."
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"%env CUDA_VISIBLE_DEVICES=0"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"import argparse\r\n",
"import json\r\n",
"import datetime as dt\r\n",
"import numpy as np\r\n",
"import matplotlib.pyplot as plt\r\n",
"import IPython.display as ipd\r\n",
"from tqdm import tqdm\r\n",
"from scipy.io.wavfile import write\r\n",
"\r\n",
"import torch\r\n",
"\r\n",
"# For Grad-TTS\r\n",
"import params\r\n",
"from model import GradTTS\r\n",
"from text import text_to_sequence, cmudict\r\n",
"from text.symbols import symbols\r\n",
"from utils import intersperse\r\n",
"\r\n",
"# For HiFi-GAN\r\n",
"import sys\r\n",
"sys.path.append('./hifi-gan/')\r\n",
"from env import AttrDict\r\n",
"from models import Generator as HiFiGAN"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"N_SPKS = 247 # 247 for Libri-TTS model and 1 for single speaker (LJSpeech)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"generator = GradTTS(len(symbols)+1, N_SPKS, params.spk_emb_dim,\r\n",
" params.n_enc_channels, params.filter_channels,\r\n",
" params.filter_channels_dp, params.n_heads, params.n_enc_layers,\r\n",
" params.enc_kernel, params.enc_dropout, params.window_size,\r\n",
" params.n_feats, params.dec_dim, params.beta_min, params.beta_max,\r\n",
" pe_scale=1000) # pe_scale=1 for `grad-tts-old.pt`\r\n",
"generator.load_state_dict(torch.load('./checkpts/grad-tts-libri-tts.pt', map_location=lambda loc, storage: loc))\r\n",
"_ = generator.cuda().eval()\r\n",
"print(f'Number of parameters: {generator.nparams}')\r\n",
"\r\n",
"cmu = cmudict.CMUDict('./resources/cmu_dictionary')"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"with open('./checkpts/hifigan-config.json') as f:\r\n",
" h = AttrDict(json.load(f))\r\n",
"hifigan = HiFiGAN(h)\r\n",
"hifigan.load_state_dict(torch.load('./checkpts/hifigan.pt', map_location=lambda loc, storage: loc)['generator'])\r\n",
"_ = hifigan.cuda().eval()\r\n",
"hifigan.remove_weight_norm()\r\n",
"%matplotlib inline"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"text = \"Here are the match lineups for the Colombia Haiti match.\""
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"x = torch.LongTensor(intersperse(text_to_sequence(text, dictionary=cmu), len(symbols))).cuda()[None]\r\n",
"x_lengths = torch.LongTensor([x.shape[-1]]).cuda()\r\n",
"x.shape, x_lengths"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"t = dt.datetime.now()\r\n",
"y_enc, y_dec, attn = generator.forward(x, x_lengths, n_timesteps=50, temperature=1.3,\r\n",
" stoc=False, spk=None if N_SPKS==1 else torch.LongTensor([15]).cuda(),\r\n",
" length_scale=0.91)\r\n",
"t = (dt.datetime.now() - t).total_seconds()\r\n",
"print(f'Grad-TTS RTF: {t * 22050 / (y_dec.shape[-1] * 256)}')\r\n",
"\r\n",
"plt.figure(figsize=(15, 4))\r\n",
"plt.subplot(1, 3, 1)\r\n",
"plt.title('Encoder outputs')\r\n",
"plt.imshow(y_enc.cpu().squeeze(), aspect='auto', origin='lower')\r\n",
"plt.colorbar()\r\n",
"plt.subplot(1, 3, 2)\r\n",
"plt.title('Decoder outputs')\r\n",
"plt.imshow(y_dec.cpu().squeeze(), aspect='auto', origin='lower')\r\n",
"plt.colorbar()\r\n",
"plt.subplot(1, 3, 3)\r\n",
"plt.title('Alignment')\r\n",
"plt.imshow(attn.cpu().squeeze(), aspect='auto', origin='lower');"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"with torch.no_grad():\r\n",
" audio = hifigan.forward(y_dec).cpu().squeeze().clamp(-1, 1)\r\n",
"ipd.display(ipd.Audio(audio, rate=22050))"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.3 64-bit"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"metadata": {
"interpreter": {
"hash": "1c27759576147a09f82f75fe7e6da160ee29ac300de0ba196702adc9d307c9a1"
}
},
"interpreter": {
"hash": "1c27759576147a09f82f75fe7e6da160ee29ac300de0ba196702adc9d307c9a1"
}
},
"nbformat": 4,
"nbformat_minor": 4
} |