Spaces:
Runtime error
Runtime error
File size: 16,749 Bytes
c11f284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# Importing required modules
import pandas as pd
import numpy as np
import numpy as np
import plotly.express as px
# To extract and parse fundamental data like beta and growth estimates from finviz website
import requests
from bs4 import BeautifulSoup as bs
# For parsing financial statements data from financialmodelingprep api
from urllib.request import urlopen
import json
# For Gradio App
import gradio as gr
import os
# uncomment and set API Key in the environment variable below
# or you can choose to set it using any other method you know
#os.environ['FMP_API_KEY'] = "your_api_key"
# read the environment variable to use in API requests later
apiKey = os.environ['FMP_API_KEY']
############################################################################################################
###### GET DATA FROM FINANCIAL MODELING PREP
############################################################################################################
# Financialmodelingprep api url
base_url = "https://financialmodelingprep.com/api/v3/"
def get_jsonparsed_data(url):
response = urlopen(url)
data = response.read().decode("utf-8")
return json.loads(data)
# get financial statements using financial modelling prep API
def get_financial_statements(ticker):
# quarterly cash flow statements for calculating latest trailing twelve months (TTM) free cash flow
columns_drop = ['acceptedDate', 'period', 'symbol', 'reportedCurrency', 'cik', 'fillingDate', 'depreciationAndAmortization']
q_cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey))
q_cash_flow_statement = q_cash_flow_statement.set_index('date').drop(columns_drop, axis=1).iloc[:4] # extract for last 4 quarters
latest_year = int(q_cash_flow_statement.iloc[0]['calendarYear'])
# annual cash flow statements
cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?apikey=' + apiKey))
cash_flow_statement = cash_flow_statement.set_index('date').drop(columns_drop, axis=1)
# combine annual and latest TTM cash flow statements
ttm_cash_flow_statement = q_cash_flow_statement.sum() # sum up last 4 quarters to get TTM cash flow
cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1)
final_cash_flow_statement = cash_flow_statement[::-1] # reverse list to show most recent ones first
# quarterly balance sheet statements
columns_drop = ['acceptedDate', 'calendarYear', 'period', 'symbol', 'reportedCurrency', 'cik', 'fillingDate']
q_balance_statement = pd.DataFrame(get_jsonparsed_data(base_url+'balance-sheet-statement/' + ticker + '?' + '&apikey=' + apiKey))
q_balance_statement = q_balance_statement.set_index('date').drop(columns_drop, axis=1)
q_balance_statement = q_balance_statement.apply(pd.to_numeric, errors='coerce')
return q_cash_flow_statement, cash_flow_statement, final_cash_flow_statement, q_balance_statement, latest_year
# check stability of cash flows
def plot_cash_flow(ticker, cash_flow_statement):
# DCF model works best only if the free cash flows are POSITIVE, STABLE and STEADILY INCREASING.
# So let's plot the graph and verify if this is the case.
fig_cash_flow = px.bar(cash_flow_statement , y='freeCashFlow', title=ticker + ' Free Cash Flows')
fig_cash_flow.update_xaxes(type='category', tickangle=270, title='Date')
fig_cash_flow.update_yaxes(title='Free Cash Flows')
#fig_cash_flow.show()
return fig_cash_flow
# get ttm cash flow, most recent total debt and cash & short term investment data from statements
def get_statements_data(final_cash_flow_statement, q_balance_statement):
cash_flow = final_cash_flow_statement.iloc[0]['freeCashFlow'] # ttm cash flow
total_debt = q_balance_statement.iloc[0]['totalDebt']
cash_and_ST_investments = q_balance_statement.iloc[0]['cashAndShortTermInvestments']
return cash_flow, total_debt, cash_and_ST_investments
############################################################################################################
###### GET DATA FROM FINVIZ WEBSITE
############################################################################################################
# Price, EPS next Y/5Y, Beta, Number of Shares Outstanding
# Extract (using requests.get) and Parse (using Beautiful Soup) data from Finviz table in the Finviz website (see screenshot above), needed to calculate intrinsic value of stock.
# List of data we want to extract from Finviz Table
# Price is the current stock price
# EPS next Y is the estimated earnings growth for next year
# EPS next 5Y is the estimated earnings growth for next 5 years (if this is not present on finviz, we will use EPS next Y instead)
# Beta captures the volatility of the stock, used for estimating discount rate later
# Shs Outstand is the number of shares present in the market
metric = ['Price', 'EPS next Y', 'EPS next 5Y', 'Beta', 'Shs Outstand']
def fundamental_metric(soup, metric):
# the table which stores the data in Finviz has html table attribute class of 'snapshot-td2'
return soup.find_all(text = metric)[-1].find_next(class_='snapshot-td2').text
# get above metrics from finviz and store as a dict
def get_finviz_data(ticker):
try:
url = ("http://finviz.com/quote.ashx?t=" + ticker.lower())
soup = bs(requests.get(url,headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}).content)
dict_finviz = {}
for m in metric:
dict_finviz[m] = fundamental_metric(soup,m)
for key, value in dict_finviz.items():
# replace percentages
if (value[-1]=='%'):
dict_finviz[key] = value[:-1]
dict_finviz[key] = float(dict_finviz[key])
# billion
if (value[-1]=='B'):
dict_finviz[key] = value[:-1]
dict_finviz[key] = float(dict_finviz[key])*1000000000
# million
if (value[-1]=='M'):
dict_finviz[key] = value[:-1]
dict_finviz[key] = float(dict_finviz[key])*1000000
try:
dict_finviz[key] = float(dict_finviz[key])
except:
pass
except Exception as e:
print (e)
print ('Not successful parsing ' + ticker + ' data.')
return dict_finviz
def parse_finviz_dict(finviz_dict):
EPS_growth_5Y = finviz_dict['EPS next 5Y']
# sometimes EPS next 5Y is empty and shows as a '-' string, in this case use EPS next Y
if isinstance(EPS_growth_5Y, str):
if not EPS_growth_5Y.isdigit():
EPS_growth_5Y = finviz_dict['EPS next Y']
EPS_growth_6Y_to_10Y = EPS_growth_5Y/2 # Half the previous growth rate, conservative estimate
#EPS_growth_11Y_to_20Y = np.minimum(EPS_growth_6Y_to_10Y, 4) # Slightly higher than long term inflation rate, conservative estimate
long_term_growth_rate = np.minimum(EPS_growth_6Y_to_10Y, 3) # Slightly higher than long term inflation rate, conservative estimate
shares_outstanding = finviz_dict['Shs Outstand']
beta = finviz_dict['Beta']
current_price = finviz_dict['Price']
return EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate, beta, shares_outstanding, current_price
## Estimate Discount Rate from Beta
def estimate_discount_rate(beta):
# Beta shows the volatility of the stock,
# the higher the beta, we want to be more conservative by increasing the discount rate also.
discount_rate = 7
if(beta<0.80):
discount_rate = 5
elif(beta>=0.80 and beta<1):
discount_rate = 6
elif(beta>=1 and beta<1.1):
discount_rate = 6.5
elif(beta>=1.1 and beta<1.2):
discount_rate = 7
elif(beta>=1.2 and beta<1.3):
discount_rate = 7.5
elif(beta>=1.3 and beta<1.4):
discount_rate = 8
elif(beta>=1.4 and beta<1.6):
discount_rate = 8.5
elif(beta>=1.61):
discount_rate = 9
return discount_rate
############################################################################################################
## Calculate Intrinsic Value
############################################################################################################
# 1. First Project Cash Flows from Year 1 to Year 10 using Present (TTM) Free Cash Flow
# 2. Discount the Cash Flows to Present Value
# 3. Calculate the Terminal Value after Year 10 (Discounted to Present Value) Assuming the Company will Grow at a Constant Steady Rate Forever (https://corporatefinanceinstitute.com/resources/financial-modeling/dcf-terminal-value-formula/)
# 4. Add the Cash Flows and the Terminal Value Up
# 5. Then Account for the Cash + Short Term Investments and Subtract Total Debt
# 6. Divide by Total Number of Shares Outstanding
def calculate_intrinsic_value(latest_year, cash_flow, total_debt, cash_and_ST_investments,
EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate,
shares_outstanding, discount_rate, current_price):
# Convert all percentages to decmials
EPS_growth_5Y_d = EPS_growth_5Y/100
EPS_growth_6Y_to_10Y_d = EPS_growth_6Y_to_10Y/100
long_term_growth_rate_d = long_term_growth_rate/100
discount_rate_d = discount_rate/100
# print("Discounted Cash Flows\n")
# Lists of projected cash flows from year 1 to year 20
cash_flow_list = []
cash_flow_discounted_list = []
year_list = []
# Years 1 to 5
for year in range(1, 6):
year_list.append(year + latest_year)
cash_flow*=(1 + EPS_growth_5Y_d)
cash_flow_list.append(cash_flow)
cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year)
cash_flow_discounted_list.append(cash_flow_discounted)
# print("Year " + str(year + latest_year) + ": $" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows
# Years 6 to 10
for year in range(6, 11):
year_list.append(year + latest_year)
cash_flow*=(1 + EPS_growth_6Y_to_10Y_d)
cash_flow_list.append(cash_flow)
cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year)
cash_flow_discounted_list.append(cash_flow_discounted)
# print("Year " + str(year + latest_year) + ": $" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows
# Store all forecasted cash flows in dataframe
forecast_cash_flows_df = pd.DataFrame.from_dict({'Year': year_list, 'Cash Flow': cash_flow_list, 'Discounted Cash Flow': cash_flow_discounted_list})
forecast_cash_flows_df = forecast_cash_flows_df.set_index('Year')
# Growth in Perpuity Approach
cashflow_10Y = cash_flow_discounted_list[-1]
# Formula to Calculate: https://corporatefinanceinstitute.com/resources/financial-modeling/dcf-terminal-value-formula/
terminal_value = cashflow_10Y*(1+long_term_growth_rate_d)/(discount_rate_d-long_term_growth_rate_d)
# Yay finally
intrinsic_value = (sum(cash_flow_discounted_list) + terminal_value - total_debt + cash_and_ST_investments)/shares_outstanding
margin_of_safety = (1-current_price/intrinsic_value)*100
return forecast_cash_flows_df, terminal_value, intrinsic_value, margin_of_safety
# Plot forecasted cash flows from years 1 to 10, as well as the discounted cash flows
def plot_forecasted_cash_flows(ticker, forecast_cash_flows_df):
fig_cash_forecast = px.bar(forecast_cash_flows_df, barmode='group', title=ticker + ' Projected Free Cash Flows')
fig_cash_forecast.update_xaxes(type='category', tickangle=270)
fig_cash_forecast.update_xaxes(tickangle=270, title='Forecasted Year')
fig_cash_forecast.update_yaxes(title='Free Cash Flows')
# fig_cash_forecast.show()
return fig_cash_forecast
# chain all the steps from the functions above together
def run_all_steps(ticker):
q_cash_flow_statement, cash_flow_statement, final_cash_flow_statement, q_balance_statement, latest_year = get_financial_statements(ticker)
fig_cash_flow = plot_cash_flow(ticker, cash_flow_statement)
cash_flow, total_debt, cash_and_ST_investments = get_statements_data(final_cash_flow_statement, q_balance_statement)
finviz_dict = get_finviz_data(ticker)
EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate, beta, shares_outstanding, current_price = parse_finviz_dict(finviz_dict)
discount_rate = estimate_discount_rate(beta)
forecast_cash_flows_df, terminal_value, intrinsic_value, margin_of_safety = calculate_intrinsic_value(latest_year, cash_flow, total_debt, cash_and_ST_investments,
EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate,
shares_outstanding, discount_rate, current_price)
fig_cash_forecast = plot_forecasted_cash_flows(ticker, forecast_cash_flows_df)
return q_cash_flow_statement.reset_index(), final_cash_flow_statement.reset_index(), q_balance_statement.reset_index(), fig_cash_flow, \
str(EPS_growth_5Y) + '%' , str(EPS_growth_6Y_to_10Y) + '%', str(long_term_growth_rate) + '%', \
beta, shares_outstanding, current_price, \
discount_rate, forecast_cash_flows_df.reset_index(), terminal_value, intrinsic_value, fig_cash_forecast, margin_of_safety
# Gradio App and UI
with gr.Blocks() as app:
with gr.Row():
gr.HTML("<h1>Bohmian's Stock Intrinsic Value Calculator</h1>")
with gr.Row():
ticker = gr.Textbox("AAPL", label='Enter stock ticker to calculate its intrinsic value e.g. "AAPL"')
btn = gr.Button("Calculate Intrinsic Value")
# Show intrinsic value calculation results
with gr.Row():
gr.HTML("<h2>Calculated Intrinsic Value</h2>")
with gr.Row():
intrinsic_value = gr.Text(label="Intrinsic Value")
current_price = gr.Text(label="Actual Stock Price")
margin_of_safety = gr.Text(label="Margin of Safety")
# Show metrics obtained and estimated from FinViz website that were essential for calculations
with gr.Row():
gr.HTML("<h2>Metrics Obtained (and Estimated) from FinViz Website</h2>")
with gr.Row():
gr.HTML("<h3>https://finviz.com/</h3>")
with gr.Row():
EPS_growth_5Y = gr.Text(label="EPS Next 5Y (Estimated EPS growth for next 5 years)")
EPS_growth_6Y_to_10Y = gr.Text(label="EPS growth for 6th to 10th year (estimated as half of above)")
long_term_growth_rate = gr.Text(label="Long Term Growth Rate (estimated as half of above or 3%, whichever is lower)")
with gr.Row():
beta = gr.Text(label="Beta (Measures volatility of stock)")
discount_rate = gr.Text(label="Discount Rate (estimated from beta)")
shares_outstanding = gr.Text(label="Shares Outstanding")
# Show detailed actual historical financial statements
with gr.Row():
gr.HTML("<h2>Actual Historical Financial Statements Data</h2>")
with gr.Row():
gr.HTML("<h3>IMPORTANT NOTE: DCF model works best only if the free cash flows are POSITIVE, STABLE and STEADILY INCREASING. Check if this is the case.</h3>")
with gr.Row():
fig_cash_flow = gr.Plot(label="Historical Cash Flows")
with gr.Row():
q_cash_flow_statement = gr.DataFrame(label="Last 4 Quarterly Cash Flow Statements")
with gr.Row():
final_cash_flow_statement = gr.DataFrame(label="TTM + Annual Cash Flow Statements")
with gr.Row():
q_balance_statement = gr.DataFrame(label="Quarterly Balance Statements")
# Show forecasted cash flows and terminal value
with gr.Row():
gr.HTML("<h2>Forecasted Cash Flows for Next 10 Years</h2>")
with gr.Row():
fig_cash_forecast = gr.Plot(label="Forecasted Cash Flows")
forecast_cash_flows_df = gr.DataFrame(label="Forecasted Cash Flows")
with gr.Row():
terminal_value = gr.Text(label="Terminal Value (after 10th year)")
btn.click(fn=run_all_steps, inputs=[ticker],
outputs=[q_cash_flow_statement, final_cash_flow_statement, q_balance_statement, fig_cash_flow, \
EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate, beta, shares_outstanding, current_price, \
discount_rate, forecast_cash_flows_df, terminal_value, intrinsic_value, fig_cash_forecast, margin_of_safety])
app.launch() |