File size: 36,548 Bytes
dfe22da
06c654b
dfe22da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e638c19
 
 
dfe22da
 
 
 
1aa7763
 
 
 
 
 
 
 
 
72d76ec
4bb91cf
 
dfe22da
1aa7763
dfe22da
06c654b
e638c19
06c654b
 
dfe22da
 
 
 
06c654b
 
 
dfe22da
 
 
 
 
 
 
 
 
 
 
 
eabbef9
dfe22da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0109fd0
dfe22da
 
 
eabbef9
dfe22da
 
 
 
 
e638c19
 
 
 
 
 
dfe22da
e638c19
4bb91cf
 
 
 
 
dfe22da
 
 
 
4bb91cf
dfe22da
e638c19
dfe22da
 
 
 
 
 
 
eabbef9
dfe22da
 
 
 
 
 
 
 
 
e638c19
 
 
 
dfe22da
 
 
 
 
e638c19
dfe22da
f9cb3b5
dfe22da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e638c19
 
 
dfe22da
 
e638c19
dfe22da
e638c19
 
dfe22da
 
 
 
cc8b84c
8ee023c
 
 
 
 
dfe22da
e638c19
 
dfe22da
 
eabbef9
 
 
 
 
e638c19
 
 
eb5e46b
 
 
 
 
 
2360df8
eb5e46b
2360df8
 
 
eb5e46b
2360df8
 
 
eb5e46b
2360df8
 
 
eb5e46b
2360df8
 
cc8b84c
 
e638c19
 
cc8b84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e638c19
eabbef9
 
 
 
 
 
c4776d0
 
 
 
 
 
30d845d
c4776d0
 
 
 
 
 
 
 
 
 
 
 
558b359
 
c4776d0
558b359
c4776d0
 
 
558b359
 
c4776d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e638c19
 
dfe22da
 
 
e638c19
dfe22da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4776d0
dfe22da
 
 
 
c4776d0
abd0396
c4776d0
 
 
 
 
abd0396
 
 
 
 
 
e638c19
dfe22da
e638c19
eabbef9
dfe22da
 
 
 
 
 
 
 
e638c19
 
06c654b
e638c19
c4776d0
dfe22da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c654b
dfe22da
 
 
06c654b
 
 
 
 
 
 
dfe22da
e638c19
dfe22da
 
 
 
e638c19
dfe22da
 
839962b
 
 
dfe22da
 
 
 
 
 
839962b
 
dfe22da
 
 
 
 
 
eabbef9
e638c19
06c654b
4d4b158
c40f638
eabbef9
 
 
4bb91cf
eabbef9
 
 
 
4bb91cf
 
 
abd0396
4bb91cf
c4776d0
abd0396
 
 
 
4bb91cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabbef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bb91cf
eabbef9
4bb91cf
eabbef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40f638
c4776d0
c40f638
eabbef9
 
 
c40f638
c4776d0
c40f638
eabbef9
 
dfe22da
26678c6
e638c19
eabbef9
 
06c654b
 
 
 
 
 
cbf4d59
 
 
 
f1f3cfc
cbf4d59
 
 
06c654b
 
e638c19
06c654b
eabbef9
06c654b
 
 
 
 
e638c19
06c654b
 
 
e638c19
06c654b
 
 
dfe22da
06c654b
eabbef9
06c654b
dfe22da
06c654b
 
dfe22da
06c654b
 
 
 
 
eabbef9
06c654b
dfe22da
06c654b
 
dfe22da
06c654b
 
 
 
dfe22da
06c654b
eabbef9
06c654b
dfe22da
 
eabbef9
 
4bb91cf
06c654b
 
 
8975dfa
06c654b
 
c40f638
eabbef9
 
 
4bb91cf
 
 
 
 
 
 
c4776d0
4bb91cf
 
 
 
 
 
 
 
 
 
 
c40f638
4bb91cf
 
 
 
 
 
 
 
 
 
c40f638
 
 
558b359
c40f638
 
c4776d0
c40f638
 
 
 
abd0396
 
88dfb76
abd0396
c4776d0
 
558b359
c4776d0
e809ac3
c4776d0
e809ac3
558b359
c4776d0
e809ac3
c4776d0
 
 
 
 
e809ac3
c4776d0
abd0396
 
72d76ec
abd0396
c40f638
 
8975dfa
c40f638
 
558b359
f3f4969
c4776d0
e809ac3
0955541
c4776d0
8975dfa
c4776d0
 
 
 
 
 
0955541
72d76ec
abd0396
 
 
 
c40f638
c4776d0
c40f638
 
 
 
 
 
 
c4776d0
f3f4969
8577ce1
953fb9a
 
 
c4776d0
02f90d5
c4776d0
 
 
 
 
 
8975dfa
055d2ed
c4776d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import streamlit as st
from streamlit_option_menu import option_menu

import os
from langchain.llms import HuggingFaceHub # for calling HuggingFace Inference API (free for our use case)
from langchain.embeddings import HuggingFaceEmbeddings # to let program know what embeddings the vector store was embedded in earlier

# to set up the agent and tools which will be used to answer questions later
from langchain.agents import initialize_agent 
from langchain.agents import tool # decorator so each function will be recognized as a tool
from langchain.chains.retrieval_qa.base import RetrievalQA # to answer questions from vector store retriever
# from langchain.chains.question_answering import load_qa_chain # to further customize qa chain if needed
from langchain.vectorstores import Chroma # vector store for retriever
import ast # to parse user string input to list for one of the tools (agent tools do not support 2 inputs)
#from langchain.memory import ConversationBufferMemory # not used as of now
import pickle # for loading the bm25 retriever
from langchain.retrievers import EnsembleRetriever # to use chroma and 

# for defining a generic LLMChain as a generic chat tool (if needed)
from langchain.prompts import PromptTemplate 
from langchain.chains import LLMChain

# for printing intermediate steps of agent (actions, tool calling etc.)
from langchain.callbacks.base import BaseCallbackHandler

import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)

# for web scraping and user to override
from web_scrape_and_pdf_loader import (
    duckduckgo_scrape, 
    process_links_load_documents, 
    setup_chromadb_vectorstore, 
    setup_bm25_retriever, 
    pdf_loader_local
)

# look for new retrievers that user created (to override existing ones if user chooses)
import glob

# os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'your_api_key' # for using HuggingFace Inference API
# alternatively set your env variable above


################################ Callback ################################
# callback is needed to print intermediate steps of agent reasoning in the chatbot
# i.e. when action is taken, when tool is called, when tool call is complete etc.
class MyCallbackHandler(BaseCallbackHandler):
    def __init__(self):
        self.tokens = []

    # def on_llm_new_token(self, token, **kwargs) -> None: # HuggingFaceHub() cannot stream unfortunately!
    #     self.tokens.append(token)
    #     print(token)      

    def on_agent_action(self, action, **kwargs):
        """Run on agent action."""
        print("\n\nnew action", action)
        thought = action.log.replace('\n', '  \n') # so streamlit will recognize as newline
        tool_called = action.tool
        # tool_input = action.tool_input
        calling_tool = f"I am calling the '{tool_called}' tool and waiting for it to give me a result..."
        st.session_state.messages.extend(
            [{"role": "assistant", "content": thought}, {"role": "assistant", "content": calling_tool}]
        )
        # Add the response to the chat window
        with st.chat_message("assistant"):
            st.markdown(thought)
            st.markdown(calling_tool)

    # def on_agent_finish(self, finish, **kwargs):
    #     """Run on agent end."""
    #     #print("\n\nEnd", finish)
    #     finish_string = finish.log.replace('\n', '  \n') # so streamlit will recognize as newline
    #     st.session_state.messages.append(
    #         {"role": "assistant", "content": finish_string}
    #     )
    #     with st.chat_message("assistant"):
    #         st.markdown(finish_string)
    
    # def on_llm_start(self, serialized, prompts, **kwargs):
    #     """Run when LLM starts running."""
    #     print("LLM Start: ", prompts)

        
    # def on_llm_end(self, response, **kwargs):
    #     """Run when LLM ends running."""
    #     print(response)


    def on_tool_end(self, output, **kwargs):
        """Run when tool ends running."""
        #print("\n\nTool End: ", output)
        tool_output = f":blue[[Tool Output]] {output}  \n  \nI am processing the output from the tool..."
        st.session_state.messages.append(
            {"role": "assistant", "content": tool_output}
        )
        with st.chat_message("assistant"):
            st.markdown(tool_output)

my_callback_handler = MyCallbackHandler()


################################ Configs ################################
# Set the webpage title
st.set_page_config(
    page_title="ESG Countries Chatbot",
    # layout="wide"
)

# Document Config
if 'countries_override' not in st.session_state: 
    # countries to override with own documents from uploaded pdf or updated scraped search results
    # must first scrape or upload own documents to use this
    st.session_state['countries_override'] = []
   
if 'chunk_size' not in st.session_state:
    st.session_state['chunk_size'] = 1000 # choose one of [500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000]
    
if 'chunk_overlap' not in st.session_state:
    st.session_state['chunk_overlap'] = 100 # choose one of [50, 100, 150, 200]    

# Retriever Config
if 'chroma_n_similar_documents' not in st.session_state:
    st.session_state['chroma_n_similar_documents'] =  5 # number of chunks returned by chroma vector store retriever (semantic)
  
if 'bm25_n_similar_documents' not in st.session_state:
    st.session_state['bm25_n_similar_documents'] =  5 # number of chunks returned by bm25 retriever (keyword)

if 'retriever_config' not in st.session_state:
    st.session_state['retriever_config'] =  'Ensemble (Both Re-Ranked)' # choose one of ['semantic', 'keyword', 'ensemble']

if 'keyword_retriever_weight' not in st.session_state:
    st.session_state['keyword_retriever_weight'] =  0.3 # choose between 0 and 1, only when using ensemble

if 'source_documents' not in st.session_state:
    st.session_state['source_documents'] = [] # this is to store all source documents for a particular search


# LLM config
# LLM from HuggingFace Inference API
if 'model' not in st.session_state:
    st.session_state['model'] = "mistralai/Mixtral-8x7B-Instruct-v0.1" # or "mistralai/Mistral-7B-Instruct-v0.2"

if 'temperature' not in st.session_state:
    st.session_state['temperature'] = 0.25

if 'max_new_tokens' not in st.session_state:
    st.session_state['max_new_tokens'] =  500 # max tokens generated by LLM

 
# This is the list of countries present in the pre-built vector store, since the vector store is previously prepared as they take very long to prepare
# This is for the RetrievalQA tool later to check, because even if the country given to it is not in the vector store, 
# it would still filter the vector store with this country and give an empty result, instead of giving an error. 
# We have to manually return the error to let the agent using the tool know.
# The countries were reduced to just 6 as the time taken to get the embeddings to build up the chunks is too long. 
# However, having more countries **will not affect** the quality of the answers in comparing between 2 countries in the RAG application 
# as the RAG only picks out document chunks for the 2 countries of interest.
countries = [
    "Australia",
    "China",
    "Japan",
    "Malaysia",
    "Singapore",
    "Germany",
    ]

    
################################ Get LLM and Embeddings ################################
def get_llm():
    # This is an inference endpoint API from huggingface, the model is not run locally, it is run on huggingface
    # It is a free API that is very good for deploying online for quick testing without users having to deploy a local LLM
    llm = HuggingFaceHub(repo_id=st.session_state['model'],
                        model_kwargs={
                        'temperature': st.session_state['temperature'],
                        "max_new_tokens": st.session_state['max_new_tokens']
                        }, 
                        )
    return llm

# for chromadb vectore store
def get_embeddings(): 
    # We use HuggingFaceEmbeddings() as it is open source and free to use.
    # Initialize the default hf model for embedding the tokenized texts into vectors with semantic meanings
    hf_embeddings = HuggingFaceEmbeddings()
    return hf_embeddings

# call above functions
llm = get_llm()
hf_embeddings = get_embeddings()

# when LLM config is changed we will call this function
def update_llm():
    global llm
    llm = get_llm()


################################ Download and Initialize Pre-Built Retrievers ################################

# Chromadb vector stores have already been pre-created for the countries above for each of the different chunk sizes and overlaps, and zipped up,
# to save time when experimenting as the embeddings take a long time to generate. 
# The existing stores will be pulled using from google drive above when app starts. When using the existing vector stores, 
# just need to change the name of the persist directory when selecting the different chunk sizes and overlaps.
# Later in the main app if the user choose to scrape new data, or override with their own PDF, a new chromadb would be created.
# This step will take some time
if not os.path.exists("bm25.zip"):
    with st.spinner(f'Downloading bm25 retriever for all chunk sizes and overlaps, will take some time'):  
        os.system("gdown https://drive.google.com/uc?id=1q-hNnyyBA8tKyF3vR69nkwCk9kJj7WHi")

if not os.path.exists("chromadb.zip"):
    with st.spinner(f'Downloading chromadb retrievers for all chunk sizes and overlaps, will take some time'):  
        os.system("gdown https://drive.google.com/uc?id=1zad6tgYm2o5M9E2dTLQqmm6GoI8kxNC3")

if not os.path.exists("bm25/"):
    with st.spinner(f'Unzipping bm25 retriever for all chunk sizes and overlaps, will take some time'):  
        os.system("unzip bm25.zip")

if not os.path.exists("chromadb/"):
    with st.spinner(f'Unzipping chromadb retrievers for all chunk sizes and overlaps, will take some time'):  
        os.system("unzip chromadb.zip")


# One retriever below is semantic based (chromadb) and the other is keyword based (bm25)
# Both retrievers will be used
# Then Langchain's EnsembleRetriever will be used to rerank both their results to give final output to RetrievalQA chain below
def get_retrievers():
    persist_directory = f"chromadb/chromadb_esg_countries_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}"
    with st.spinner(f'Setting up pre-built chroma vector store'):    
        chroma_db = Chroma(persist_directory=persist_directory,embedding_function=hf_embeddings)

    # Initialize BM25 Retriever
    # Unlike Chroma (semantic) BM25 is a keyword-based algorithm that performs well on queries containing keywords without capturing the semantic meaning of the query terms, 
    # hence there is no need to embed the text with HuggingFaceEmbeddings and it is relatively faster to set up. 
    # The retrievers with different chunking sizes and overlaps and countries were created in advanced and saved as pickle files and pulled using !wget.
    # Need to initialize one BM25Retriever for each country so the search results later in the main app can be limited to just a particular country. 
    # (Chroma DB gives an option to filter metadata for just a particular country during the retrieval processbut BM25 does not because it makes use of external ranking library.) 
    # A separate retriever was hence pre-built for each unique country and each unique chunk size and overlap.
    bm25_retrievers = {} # to store retrievers for different countries
    with st.spinner(f'Setting up pre-built bm25 retrievers'):   
        for country in countries:
            bm25_filename = f"bm25/bm25_esg_countries_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}.pickle"
            with open(bm25_filename, 'rb') as handle:
                bm25_retriever = pickle.load(handle)    
                bm25_retrievers[country] = bm25_retriever

    return chroma_db, bm25_retrievers

chroma_db, bm25_retrievers = get_retrievers()

# when retriever config is changed we will call this function
def update_retrievers():
    global chroma_db
    global bm25_retrievers
    chroma_db, bm25_retrievers = get_retrievers()

chroma_db_new = None
bm25_new_retrievers = {} # to store retrievers for different countries

# get retrievers for country which we override
if len(st.session_state['countries_override']) > 0:
    for country in st.session_state['countries_override']:
        chroma_db_new = Chroma(persist_directory=f"chromadb/new_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}_",embedding_function=hf_embeddings)
        bm25_filename = f"bm25/new_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}_.pickle"
        with open(bm25_filename, 'rb') as handle:
            bm25_retriever = pickle.load(handle)    
            bm25_new_retrievers[country] = bm25_retriever


# check if there are any new retrievers where user uploaded PDF or scraped new links and return list of countries for them
def check_for_new_retrievers():

    # see if retrievers/vector stores created by user's own uploaded PDF or newly scraped data is found
    new_documents_chroma = glob.glob("chromadb/new*")
    new_documents_bm25 = glob.glob("bm25/new*")
    new_documents_chroma = [os.path.split(doc)[-1] for doc in new_documents_chroma]
    new_documents_bm25 = [os.path.split(doc)[-1] for doc in new_documents_bm25]
    new_countries = []

    # loop through new docs in chroma retrievers created by user scraping/pdf (if any)
    try:
        for doc in new_documents_chroma:
            #print(doc)
            if ((doc + ".pickle") in new_documents_bm25): # check that the doc also exists for bm25 retriever

                new_doc_country = doc.split('_')[1]
                new_doc_chunk_size = doc.split('_')[3]
                new_doc_chunk_overlap = doc.split('_')[5]

                # check that the retrievers are created for the current selected chunk sizes
                if ((new_doc_chunk_overlap == str(st.session_state['chunk_overlap'])) & (new_doc_chunk_size == str(st.session_state['chunk_size']))):
                    new_countries.append(new_doc_country)
    except Exception as e:
        print(e)

    if len(new_countries) == 0:
        info = ' (Own documents are :red[NOT FOUND]. Must first scrape or upload own PDF (in menu above) before you can select any countries to override.)'
    else:
        info = ' (⚠️Own documents for the following countries :green[FOUND], select them in the list below to override.)'
    
    return new_countries, info


################################ Tools for Agent to Use ################################

# The most important tool is the first one, which uses a RetrievalQA chain to answer a question about a specific country's ESG policies, 
# e.g. carbon emissions policy of Singapore. 
# By calling this tool multiple times, the agent is able to look at the responses from this tool for both countries and compare them. 
# This is far better than just retrieving relevant chunks for the user's query and throwing everything to a single RetrievalQA chain to process
# Multi input tools are not available, hence we have to prompt the agent to give an input list as a string
# then use ast.literal_eval to convert it back into a list
@tool 
def retrieve_answer_for_country(query_and_country: str) -> str: # TODO, change diff chain type diff version answers, change 
    """Gives answer to a query about a single country's public ESG policy.
    The input list should be of the following format:
    [query, country]
    The first element of the list is the user query, surrounded by double quotes.
    The second element is the full name of the country involved, surrounded by double quotes, for example "Singapore".
    The 2 inputs are separated by a comma. Do not write a list comprehension.
    The 2 inputs, together, are surrounded by square brackets as it is a list.
    Do not put multiple countries into the input at once. Instead use this tool multiple times, one time for each country.
    If you have multiple queries to ask about a country, break the query into separate parts and use this tool multiple times, one for each query.
    """
    try:
        query_and_country_list = ast.literal_eval(query_and_country)
        query = query_and_country_list[0]
        country = query_and_country_list[1].capitalize() # in case LLM did not capitalize first letter as filtering for metadata is case sensitive
        if not country in (countries + st.session_state['countries_override']):
            return """The country that you input into the tool cannot be found. 
            If you did not make a mistake and the country that you input is indeed what the user asked,
            then there is no record for the country and no answer can be obtained."""

        # if there are countries we want to override
        if country in st.session_state['countries_override']:
            # keyword
            bm = bm25_new_retrievers [country] 
            bm.k = st.session_state['bm25_n_similar_documents']
            # semantic
            chroma = chroma_db_new.as_retriever(search_kwargs={'filter': {'country':country}, 'k': st.session_state['chroma_n_similar_documents']}) 
        else:
            # keyword
            bm = bm25_retrievers[country] 
            bm.k = st.session_state['bm25_n_similar_documents']
            # semantic
            chroma = chroma_db.as_retriever(search_kwargs={'filter': {'country':country}, 'k': st.session_state['chroma_n_similar_documents']}) 
        # ensemble (below) reranks results from both retrievers above
        ensemble = EnsembleRetriever(retrievers=[bm, chroma], weights=[st.session_state['keyword_retriever_weight'], 1 - st.session_state['keyword_retriever_weight']]) 
        # for user to make selection
        retrievers = {'Ensemble (Both Re-Ranked)': ensemble, 'Semantic (Chroma DB)': chroma, 'Keyword (BM 2.5)': bm}      
        
        qa = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type='stuff',
            retriever=retrievers[st.session_state['retriever_config']], # selected retriever based on user config
            return_source_documents=True # returned in result['source_documents']
        )
        result = qa(query)
        # add to source documents session state so it can be loaded later in the other menu
        # all source documents linked to answer any query (or part of it) are visible
        st.session_state['source_documents'].append(f"Documents retrieved for agent query '{query}' for country '{country}'.") 
        st.session_state['source_documents'].append(result['source_documents'])
        return f"'{query.capitalize()}' for '{country}': " + result['result']
    
    except Exception as e:
        return f"""There is an error using this tool: {e}. Check if you have input anything wrongly and try again. 
        Remember the 2 inputs, query and country, must both be surrounded by double quotes. 
        The 2 inputs, together, are surrounded by square brackets as it is a list."""

# if a user tries to casually chat with the agent chatbot, the LLM will be able to use this tool to reply instead
# this is optional, better to let user's know the chatbot is not for casual chatting
@tool
def generic_chat_llm(query: str) -> str:
    """Use this tool for general queries and casual chat. Forward the user input directly into this tool, do not come up with your own input.
    This tool IS NOT FOR MAKING COMPARISONS of anything.
    This tool IS NOT FOR FINDING ESG POLICY of any country!
    It is only for casual chat! Do not use this tool unnecessarily!
    """
    try:
        # Second Generic Tool
        prompt = PromptTemplate(
            input_variables=["query"],
            template="{query}"
        )
    
        llm_chain = LLMChain(llm=llm, prompt=prompt)
        return llm_chain.run(query)

    except Exception as e:
        return f"""There is an error using this tool: {e}. Check if you have input anything wrongly and try again. 
        If you have already tried 2 times, do not try anymore, there is no response for your input.
        Move on to the next step of your plan."""

# sometimes the agent will suddenly ask for a 'compare' tool even though it was not given this tool
# hence I have decided to give it this tool that gives a prompt to remind it to look at past information
# and decide whether it is time to darw a conclusion
# tools cannot have no input, hence I let the agent input a 'query' parameter even though it is not used
# having the query as input let the LLM 'recall' what is being asked 
# instead of it being lost all the way at the start of the ReAct process
@tool
def compare(query:str) -> str: 
    """Use this tool to give you hints and instructions on how you can compare between policies of countries.
    Use this tool as a final step, only after you have used other tools to obtain all the information you need.
    When putting the query into this tool, look at the entire query that the user has asked at the start,
    do not leave any details in the query out.
    """
    return f"""Once again, check through all your previous observations to answer the user query. 
    Make sure every part of the query is addressed by the context, or that you have at least tried to do so.
    Make sure you have not forgotten to address anything in the query.
    If you still need more details, you can use another tool to find out more if you have not tried using the same tool with the necessary input earlier. 
    If you have enough information, use your reasoning to answer them to the best of your ability. 
    Give as much elaboration in your answer as possible but they MUST be from the earlier context.
    Do not give details that cannot be found in the earlier context."""

# equip tools with callbacks
retrieve_answer_for_country.callbacks = [my_callback_handler]
compare.callbacks = [my_callback_handler]
generic_chat_llm.callbacks = [my_callback_handler]

# Initialize
agent = initialize_agent(
    [retrieve_answer_for_country, compare], # tools
    # uncomment below if want to enable general chat option also, if user engages bot with casual talk
    # however user should be advised not to do this
    # [generic_chat_llm, retrieve_answer_for_country, compare],
    llm=llm,
    agent="zero-shot-react-description", # this is good
    verbose=False,
    handle_parsing_errors=True,
    return_intermediate_steps=True,
    callbacks=[my_callback_handler]
    # no memories, limited RAM in HuggingFaceSpaces
    # in production mode conversation can be stored for separate users/chat sessions in postgresql database
    # memory=ConversationBufferMemory(
    #             memory_key="chat_history", return_messages=True
    # ),
    # max_iterations=10
)

   
################################ Sidebar with Menu ################################
with st.sidebar:
    st.title("ESG Countries Chatbot")
    page = option_menu("Menu", 
        [
            "Main Chatbot", 
            "View Source Docs for Last Query",      
            "Scrape or Upload Own Docs",  
        ], 
        icons=['house', 'gear', 'gear', 'gear'], 
        menu_icon="", default_index=0)
    
    with st.expander("Warning", expanded = True):
        st.write("⚠️ DO NOT navigate between pages or change config when chat is ongoing.  Wait for query to complete first.")
         
    st.write("")

    new_countries, info = check_for_new_retrievers()

    # if new retrievers that pass the above criteria are found, let the user know their countries
    # the user can select from these countries to override existing retrievers
    # otherwise prompt user to scrape or upload own PDF to create the new retrievers

    with st.expander("Document Config", expanded = True):
        st.multiselect(
                'Countries to Override with Own Docs:' + info,
                new_countries,
                key="countries_override"           
            )

        st.selectbox(
                "Chunk Size", 
                options=[500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000], 
                on_change=update_retrievers,
                key="chunk_size"
            )
        
        st.selectbox(
                "Chunk Overlap", 
                options=[50, 100, 150, 200],
                on_change=update_retrievers,
                key="chunk_overlap"
            )
    
    st.write("")

    with st.expander("LLM Config", expanded = True):
        
        st.selectbox(
                "HuggingFace Inference Model", 
                options=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"], 
                on_change=update_llm,
                key="model"
            )
        
        st.slider(
                "Temperature", 
                0.0, 1.0, 0.05,
                #value = st.session_state['temperature'],
                on_change=update_llm,
                key="temperature"
            )
        
        st.slider(
                "Max Tokens Generated", 
                200, 1000,
                on_change=update_llm,
                key="max_new_tokens"
            )  

    st.write("")

    with st.expander("Retriever Config", expanded = True):

        st.selectbox(
            "Retriever to Use", 
            options=['Ensemble (Both Re-Ranked)', 'Semantic (Chroma DB)', 'Keyword (BM 2.5)'], 
            key="retriever_config"
        )

        st.slider(
                "Keyword Retriever Weight (If using ensemble retriever, this is the weight of the keyword retriever, semantic retriever would be 1 minus this value)", 
                0.0, 0.05, 1.0,
                key="keyword_retriever_weight"
        )

        st.number_input(
                "Number of Relevant Documents Returned by Keyword Retriever (BM25)", 
                0, 20,
                key="bm25_n_similar_documents"
        )

        st.number_input(
                "Number of Relevant Documents Returned by Semantic Retriever (ChromaDB)", 
                0, 20,
                key="chroma_n_similar_documents"
        )


################################ Main Chatbot Page ################################
if page == "Main Chatbot":
    st.subheader("Chatbot")
    
    # Store the conversation in the session state.
    # Used to render the chat conversation.
    # Initialize it with the first message for users to be greeted with
    if "messages" not in st.session_state:
        st.session_state.messages = [
            {"role": "assistant", 
            "content": f"""
                Hello, I am a chatbot which specializes in ESG policies of countries.
                Currently I have data for {(', ').join(countries)}.
                You can update the data or add data for more countries in the left menu under ""Scrape or Upload Own Docs".
                You can ask me to compare specific policies between multiple countries too. An example of a question you can ask me is:
                "What are the differences between carbon emissions policy in Singapore, Malaysia and China?" How may I help you today?
            """}
        ]

    # Loop through each message in the session state and render it as a chat message
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # We take questions/instructions from the chat input to pass to the LLM
    if user_query := st.chat_input("Your message here", key="user_input"):

        # reset source documents list during a new query
        st.session_state['source_documents'] = [f"User query: '{user_query}'"] # reset source documents list

        # Add our input to the session state
        formatted_user_query = f":blue[{user_query}]"        
        st.session_state.messages.append(
            {"role": "user", "content": formatted_user_query}
        )

        # Add our input to the chat window
        with st.chat_message("user"):
            st.markdown(formatted_user_query)

        # Let user know agent is planning the actions
        action_plan_message = "Please wait while I plan out a best set of actions to obtain the necessary information to answer your query."

        # Add the response to the session state
        st.session_state.messages.append(
            {"role": "assistant", "content": action_plan_message}
        )
        # Add the response to the chat window
        with st.chat_message("assistant"):
            st.markdown(action_plan_message)

        results = agent(user_query)
        response = f":blue[The answer to your query is:] {results['output']}"

        # Add the response to the session state
        st.session_state.messages.append(
            {"role": "assistant", "content": response}
        )

        # Add the response to the chat window
        with st.chat_message("assistant"):
            st.markdown(response)


################################ Source Documents Page ################################
if page == "View Source Docs for Last Query":
    st.subheader("Source Documents for Last Query")
    try:
        st.subheader(st.session_state['source_documents'][0])
        for doc in st.session_state['source_documents'][1:]:
            #st.write("Source: " + doc['page_content'])
            st.write(doc)
    except:
        st.write("No source documents retrieved yet. Please run a full user query before coming back to this page.")



################################ Scrap or Upload Documents Page ################################
# to scrape new documents from DuckDuckGo
# to upload own PDF
# to override existing data on new scraped data or new pdf uploaded
if page == "Scrape or Upload Own Docs":
    st.header("Scrape or Upload Own PDF")
    st.write("Here you can choose to upload your own PDF or scrape more recent data via DuckDuckGo search for a selected country below.")
    st.write(":blue[NOTE: Certain countries were not present in the original default vector stores, you can scrape data for these countries too so you can ask about them in the chat.]")
    st.write("You will create new BM2.5 (keyword) and Chroma (semantic) retrievers for it. Note that this can take a very long time.")

    country_scrape_upload = st.selectbox(
        "Select Country", 
        options=[
            "Australia", "Bangladesh", "Brunei", "Cambodia", "China", "India", "Indonesia", "Japan", "Laos", "Macau", "Malaysia", "Myanmar",
            "Nepal", "Philippines", "Singapore", "South Korea", "Sri Lanka", "Thailand", "Vietnam", "France", "Germany", "Israel", "Poland",
            "Sweden", "Turkey", "United Kingdom", "United States"
            ], 
    )

    # display documents chunk sizes and overlaps
    col1, col2 = st.columns(2)
    with col1:
        with st.container(border = True):
            st.write("New Documents Chunk Size: (Can change in sidebar)" )
            st.text(f"{st.session_state['chunk_size']}" )
    with col2:
        with st.container(border = True):
            st.write("New Documents Chunk Overlap: (Can change in sidebar)" )
            st.text(f"{st.session_state['chunk_overlap']}")

    # how user wishes to populate documents
    options = [
                "Upload Own PDF", 
                "Automatically Scrape Web Data using DuckDuckGo (may take more than 5 mins)"
            ]

    option = st.radio(
        "How Do You Wish To Create New Documents", 
        options=options 
    )

    submit_upload_pdf = False
    submit_scrape_web = False
    submit_scrape_vector_store = False

    # save new retrievers in local directory
    def save_new_retrievers(all_documents, chunk_size, chunk_overlap, country_scrape_upload):
        with st.spinner('Setting up new bm25 retrievers with documents, may take more than 5 mins...'):
            # vectorstore for this country will be stored in "bm25/new_{country}_chunk_{chunk_size}_overlap_{chunk_overlap}_"
            # can be used to override existing vectorstore for this country in sidebar document configuration
            setup_bm25_retriever(all_documents, chunk_size, chunk_overlap, country_scrape_upload)
        
        with st.spinner('Setting up new chromadb vector stores with documents, may take more than 5 mins...'):
            # vectorstore for this country will be stored in "chroma_db/new_{country}_chunk_{chunk_size}_overlap_{chunk_overlap}_"
            # can be used to override existing vectorstore for this country in sidebar document configuration
            setup_chromadb_vectorstore(hf_embeddings, all_documents, chunk_size, chunk_overlap, country_scrape_upload) 
        
        st.toast(":blue[SUCCESS!] New retrievers set up with your new data. To override data for this country, you can :blue[Select the Countries to Override in the 'Document Config'] section of the left sidebar.")
        st.rerun()  
        

    
    # form for user to configure pdf loading options
    if option == options[0]:        
        with st.form(key='upload_pdf_form'):
            st.subheader(f"Selected Option: {option}")        
            uploaded_pdf = st.file_uploader("Upload a PDF")
            if uploaded_pdf:
                temp_file = uploaded_pdf.name
                with open(temp_file, "wb") as file:
                    file.write(uploaded_pdf.getvalue())
            submit_upload_pdf = st.form_submit_button(label='Upload and Create Vector Store (Scroll down after clicking)')   
            st.markdown(":blue[NOTE:] After you are done creating the vector store, the country will appear under :blue[Countries to Override in the 'Document Config'] section of the left sidebar. Select the country to override it.")
            

        if submit_upload_pdf:
            try:
                with st.spinner('Generating documents from PDF...may take more than 5 mins...'):
                    all_documents = pdf_loader_local(temp_file, country_scrape_upload) 
                    #st.write(all_documents)
                save_new_retrievers(all_documents, st.session_state['chunk_size'], st.session_state['chunk_overlap'], country_scrape_upload)
                
            except Exception as e:
                st.write(f"Error! Did you remember to upload the PDF file? Error Message: {e}")
            
            
    # form for user to configure web scraping for duckduckgo
    if option == options[1]:        
        with st.form(key='scrape_web_form'):
            st.subheader(f"Selected Option: {option}")
            n_search_results = st.number_input(
                                        "How many DuckDuckGo search results would you like to scrape? In the default vector stores, the number is 10 but it will take a very long time!", 
                                        0, 20,
                                        value = 5
                                    )
            search_term = st.text_input(
                                        "Search Term", 
                                        value = f"{country_scrape_upload} sustainability esg newest updated public policy document government", 
                                    )
            submit_scrape_web = st.form_submit_button(label='Scrape Web for Results and Create Vector Store (Scroll down after clicking)')  
            st.markdown(":blue[NOTE:] After you are done creating the vector store, the country will appear under :blue[Countries to Override in the 'Document Config'] section of the left sidebar. Select the country to override it.")
            

        if submit_scrape_web:
            with st.spinner('Scraping web using Duck Duck Go search...'):
                 all_links, df_links = duckduckgo_scrape(country_scrape_upload, search_term, n_search_results)       

            st.write(f"Results from Web Scrape")
            try:
                st.write(df_links)
            except:
                st.write("Waiting for web scraping results.")

            with st.spinner('Generating documents from web search results...may take more than 5 mins...'):
                all_documents = process_links_load_documents(all_links)    
            save_new_retrievers(all_documents, st.session_state['chunk_size'], st.session_state['chunk_overlap'], country_scrape_upload)