Spaces:
Sleeping
Sleeping
File size: 36,548 Bytes
dfe22da 06c654b dfe22da e638c19 dfe22da 1aa7763 72d76ec 4bb91cf dfe22da 1aa7763 dfe22da 06c654b e638c19 06c654b dfe22da 06c654b dfe22da eabbef9 dfe22da 0109fd0 dfe22da eabbef9 dfe22da e638c19 dfe22da e638c19 4bb91cf dfe22da 4bb91cf dfe22da e638c19 dfe22da eabbef9 dfe22da e638c19 dfe22da e638c19 dfe22da f9cb3b5 dfe22da e638c19 dfe22da e638c19 dfe22da e638c19 dfe22da cc8b84c 8ee023c dfe22da e638c19 dfe22da eabbef9 e638c19 eb5e46b 2360df8 eb5e46b 2360df8 eb5e46b 2360df8 eb5e46b 2360df8 eb5e46b 2360df8 cc8b84c e638c19 cc8b84c e638c19 eabbef9 c4776d0 30d845d c4776d0 558b359 c4776d0 558b359 c4776d0 558b359 c4776d0 e638c19 dfe22da e638c19 dfe22da c4776d0 dfe22da c4776d0 abd0396 c4776d0 abd0396 e638c19 dfe22da e638c19 eabbef9 dfe22da e638c19 06c654b e638c19 c4776d0 dfe22da 06c654b dfe22da 06c654b dfe22da e638c19 dfe22da e638c19 dfe22da 839962b dfe22da 839962b dfe22da eabbef9 e638c19 06c654b 4d4b158 c40f638 eabbef9 4bb91cf eabbef9 4bb91cf abd0396 4bb91cf c4776d0 abd0396 4bb91cf eabbef9 4bb91cf eabbef9 4bb91cf eabbef9 c40f638 c4776d0 c40f638 eabbef9 c40f638 c4776d0 c40f638 eabbef9 dfe22da 26678c6 e638c19 eabbef9 06c654b cbf4d59 f1f3cfc cbf4d59 06c654b e638c19 06c654b eabbef9 06c654b e638c19 06c654b e638c19 06c654b dfe22da 06c654b eabbef9 06c654b dfe22da 06c654b dfe22da 06c654b eabbef9 06c654b dfe22da 06c654b dfe22da 06c654b dfe22da 06c654b eabbef9 06c654b dfe22da eabbef9 4bb91cf 06c654b 8975dfa 06c654b c40f638 eabbef9 4bb91cf c4776d0 4bb91cf c40f638 4bb91cf c40f638 558b359 c40f638 c4776d0 c40f638 abd0396 88dfb76 abd0396 c4776d0 558b359 c4776d0 e809ac3 c4776d0 e809ac3 558b359 c4776d0 e809ac3 c4776d0 e809ac3 c4776d0 abd0396 72d76ec abd0396 c40f638 8975dfa c40f638 558b359 f3f4969 c4776d0 e809ac3 0955541 c4776d0 8975dfa c4776d0 0955541 72d76ec abd0396 c40f638 c4776d0 c40f638 c4776d0 f3f4969 8577ce1 953fb9a c4776d0 02f90d5 c4776d0 8975dfa 055d2ed c4776d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import streamlit as st
from streamlit_option_menu import option_menu
import os
from langchain.llms import HuggingFaceHub # for calling HuggingFace Inference API (free for our use case)
from langchain.embeddings import HuggingFaceEmbeddings # to let program know what embeddings the vector store was embedded in earlier
# to set up the agent and tools which will be used to answer questions later
from langchain.agents import initialize_agent
from langchain.agents import tool # decorator so each function will be recognized as a tool
from langchain.chains.retrieval_qa.base import RetrievalQA # to answer questions from vector store retriever
# from langchain.chains.question_answering import load_qa_chain # to further customize qa chain if needed
from langchain.vectorstores import Chroma # vector store for retriever
import ast # to parse user string input to list for one of the tools (agent tools do not support 2 inputs)
#from langchain.memory import ConversationBufferMemory # not used as of now
import pickle # for loading the bm25 retriever
from langchain.retrievers import EnsembleRetriever # to use chroma and
# for defining a generic LLMChain as a generic chat tool (if needed)
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# for printing intermediate steps of agent (actions, tool calling etc.)
from langchain.callbacks.base import BaseCallbackHandler
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
# for web scraping and user to override
from web_scrape_and_pdf_loader import (
duckduckgo_scrape,
process_links_load_documents,
setup_chromadb_vectorstore,
setup_bm25_retriever,
pdf_loader_local
)
# look for new retrievers that user created (to override existing ones if user chooses)
import glob
# os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'your_api_key' # for using HuggingFace Inference API
# alternatively set your env variable above
################################ Callback ################################
# callback is needed to print intermediate steps of agent reasoning in the chatbot
# i.e. when action is taken, when tool is called, when tool call is complete etc.
class MyCallbackHandler(BaseCallbackHandler):
def __init__(self):
self.tokens = []
# def on_llm_new_token(self, token, **kwargs) -> None: # HuggingFaceHub() cannot stream unfortunately!
# self.tokens.append(token)
# print(token)
def on_agent_action(self, action, **kwargs):
"""Run on agent action."""
print("\n\nnew action", action)
thought = action.log.replace('\n', ' \n') # so streamlit will recognize as newline
tool_called = action.tool
# tool_input = action.tool_input
calling_tool = f"I am calling the '{tool_called}' tool and waiting for it to give me a result..."
st.session_state.messages.extend(
[{"role": "assistant", "content": thought}, {"role": "assistant", "content": calling_tool}]
)
# Add the response to the chat window
with st.chat_message("assistant"):
st.markdown(thought)
st.markdown(calling_tool)
# def on_agent_finish(self, finish, **kwargs):
# """Run on agent end."""
# #print("\n\nEnd", finish)
# finish_string = finish.log.replace('\n', ' \n') # so streamlit will recognize as newline
# st.session_state.messages.append(
# {"role": "assistant", "content": finish_string}
# )
# with st.chat_message("assistant"):
# st.markdown(finish_string)
# def on_llm_start(self, serialized, prompts, **kwargs):
# """Run when LLM starts running."""
# print("LLM Start: ", prompts)
# def on_llm_end(self, response, **kwargs):
# """Run when LLM ends running."""
# print(response)
def on_tool_end(self, output, **kwargs):
"""Run when tool ends running."""
#print("\n\nTool End: ", output)
tool_output = f":blue[[Tool Output]] {output} \n \nI am processing the output from the tool..."
st.session_state.messages.append(
{"role": "assistant", "content": tool_output}
)
with st.chat_message("assistant"):
st.markdown(tool_output)
my_callback_handler = MyCallbackHandler()
################################ Configs ################################
# Set the webpage title
st.set_page_config(
page_title="ESG Countries Chatbot",
# layout="wide"
)
# Document Config
if 'countries_override' not in st.session_state:
# countries to override with own documents from uploaded pdf or updated scraped search results
# must first scrape or upload own documents to use this
st.session_state['countries_override'] = []
if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 1000 # choose one of [500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000]
if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 100 # choose one of [50, 100, 150, 200]
# Retriever Config
if 'chroma_n_similar_documents' not in st.session_state:
st.session_state['chroma_n_similar_documents'] = 5 # number of chunks returned by chroma vector store retriever (semantic)
if 'bm25_n_similar_documents' not in st.session_state:
st.session_state['bm25_n_similar_documents'] = 5 # number of chunks returned by bm25 retriever (keyword)
if 'retriever_config' not in st.session_state:
st.session_state['retriever_config'] = 'Ensemble (Both Re-Ranked)' # choose one of ['semantic', 'keyword', 'ensemble']
if 'keyword_retriever_weight' not in st.session_state:
st.session_state['keyword_retriever_weight'] = 0.3 # choose between 0 and 1, only when using ensemble
if 'source_documents' not in st.session_state:
st.session_state['source_documents'] = [] # this is to store all source documents for a particular search
# LLM config
# LLM from HuggingFace Inference API
if 'model' not in st.session_state:
st.session_state['model'] = "mistralai/Mixtral-8x7B-Instruct-v0.1" # or "mistralai/Mistral-7B-Instruct-v0.2"
if 'temperature' not in st.session_state:
st.session_state['temperature'] = 0.25
if 'max_new_tokens' not in st.session_state:
st.session_state['max_new_tokens'] = 500 # max tokens generated by LLM
# This is the list of countries present in the pre-built vector store, since the vector store is previously prepared as they take very long to prepare
# This is for the RetrievalQA tool later to check, because even if the country given to it is not in the vector store,
# it would still filter the vector store with this country and give an empty result, instead of giving an error.
# We have to manually return the error to let the agent using the tool know.
# The countries were reduced to just 6 as the time taken to get the embeddings to build up the chunks is too long.
# However, having more countries **will not affect** the quality of the answers in comparing between 2 countries in the RAG application
# as the RAG only picks out document chunks for the 2 countries of interest.
countries = [
"Australia",
"China",
"Japan",
"Malaysia",
"Singapore",
"Germany",
]
################################ Get LLM and Embeddings ################################
def get_llm():
# This is an inference endpoint API from huggingface, the model is not run locally, it is run on huggingface
# It is a free API that is very good for deploying online for quick testing without users having to deploy a local LLM
llm = HuggingFaceHub(repo_id=st.session_state['model'],
model_kwargs={
'temperature': st.session_state['temperature'],
"max_new_tokens": st.session_state['max_new_tokens']
},
)
return llm
# for chromadb vectore store
def get_embeddings():
# We use HuggingFaceEmbeddings() as it is open source and free to use.
# Initialize the default hf model for embedding the tokenized texts into vectors with semantic meanings
hf_embeddings = HuggingFaceEmbeddings()
return hf_embeddings
# call above functions
llm = get_llm()
hf_embeddings = get_embeddings()
# when LLM config is changed we will call this function
def update_llm():
global llm
llm = get_llm()
################################ Download and Initialize Pre-Built Retrievers ################################
# Chromadb vector stores have already been pre-created for the countries above for each of the different chunk sizes and overlaps, and zipped up,
# to save time when experimenting as the embeddings take a long time to generate.
# The existing stores will be pulled using from google drive above when app starts. When using the existing vector stores,
# just need to change the name of the persist directory when selecting the different chunk sizes and overlaps.
# Later in the main app if the user choose to scrape new data, or override with their own PDF, a new chromadb would be created.
# This step will take some time
if not os.path.exists("bm25.zip"):
with st.spinner(f'Downloading bm25 retriever for all chunk sizes and overlaps, will take some time'):
os.system("gdown https://drive.google.com/uc?id=1q-hNnyyBA8tKyF3vR69nkwCk9kJj7WHi")
if not os.path.exists("chromadb.zip"):
with st.spinner(f'Downloading chromadb retrievers for all chunk sizes and overlaps, will take some time'):
os.system("gdown https://drive.google.com/uc?id=1zad6tgYm2o5M9E2dTLQqmm6GoI8kxNC3")
if not os.path.exists("bm25/"):
with st.spinner(f'Unzipping bm25 retriever for all chunk sizes and overlaps, will take some time'):
os.system("unzip bm25.zip")
if not os.path.exists("chromadb/"):
with st.spinner(f'Unzipping chromadb retrievers for all chunk sizes and overlaps, will take some time'):
os.system("unzip chromadb.zip")
# One retriever below is semantic based (chromadb) and the other is keyword based (bm25)
# Both retrievers will be used
# Then Langchain's EnsembleRetriever will be used to rerank both their results to give final output to RetrievalQA chain below
def get_retrievers():
persist_directory = f"chromadb/chromadb_esg_countries_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}"
with st.spinner(f'Setting up pre-built chroma vector store'):
chroma_db = Chroma(persist_directory=persist_directory,embedding_function=hf_embeddings)
# Initialize BM25 Retriever
# Unlike Chroma (semantic) BM25 is a keyword-based algorithm that performs well on queries containing keywords without capturing the semantic meaning of the query terms,
# hence there is no need to embed the text with HuggingFaceEmbeddings and it is relatively faster to set up.
# The retrievers with different chunking sizes and overlaps and countries were created in advanced and saved as pickle files and pulled using !wget.
# Need to initialize one BM25Retriever for each country so the search results later in the main app can be limited to just a particular country.
# (Chroma DB gives an option to filter metadata for just a particular country during the retrieval processbut BM25 does not because it makes use of external ranking library.)
# A separate retriever was hence pre-built for each unique country and each unique chunk size and overlap.
bm25_retrievers = {} # to store retrievers for different countries
with st.spinner(f'Setting up pre-built bm25 retrievers'):
for country in countries:
bm25_filename = f"bm25/bm25_esg_countries_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}.pickle"
with open(bm25_filename, 'rb') as handle:
bm25_retriever = pickle.load(handle)
bm25_retrievers[country] = bm25_retriever
return chroma_db, bm25_retrievers
chroma_db, bm25_retrievers = get_retrievers()
# when retriever config is changed we will call this function
def update_retrievers():
global chroma_db
global bm25_retrievers
chroma_db, bm25_retrievers = get_retrievers()
chroma_db_new = None
bm25_new_retrievers = {} # to store retrievers for different countries
# get retrievers for country which we override
if len(st.session_state['countries_override']) > 0:
for country in st.session_state['countries_override']:
chroma_db_new = Chroma(persist_directory=f"chromadb/new_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}_",embedding_function=hf_embeddings)
bm25_filename = f"bm25/new_{country}_chunk_{st.session_state['chunk_size']}_overlap_{st.session_state['chunk_overlap']}_.pickle"
with open(bm25_filename, 'rb') as handle:
bm25_retriever = pickle.load(handle)
bm25_new_retrievers[country] = bm25_retriever
# check if there are any new retrievers where user uploaded PDF or scraped new links and return list of countries for them
def check_for_new_retrievers():
# see if retrievers/vector stores created by user's own uploaded PDF or newly scraped data is found
new_documents_chroma = glob.glob("chromadb/new*")
new_documents_bm25 = glob.glob("bm25/new*")
new_documents_chroma = [os.path.split(doc)[-1] for doc in new_documents_chroma]
new_documents_bm25 = [os.path.split(doc)[-1] for doc in new_documents_bm25]
new_countries = []
# loop through new docs in chroma retrievers created by user scraping/pdf (if any)
try:
for doc in new_documents_chroma:
#print(doc)
if ((doc + ".pickle") in new_documents_bm25): # check that the doc also exists for bm25 retriever
new_doc_country = doc.split('_')[1]
new_doc_chunk_size = doc.split('_')[3]
new_doc_chunk_overlap = doc.split('_')[5]
# check that the retrievers are created for the current selected chunk sizes
if ((new_doc_chunk_overlap == str(st.session_state['chunk_overlap'])) & (new_doc_chunk_size == str(st.session_state['chunk_size']))):
new_countries.append(new_doc_country)
except Exception as e:
print(e)
if len(new_countries) == 0:
info = ' (Own documents are :red[NOT FOUND]. Must first scrape or upload own PDF (in menu above) before you can select any countries to override.)'
else:
info = ' (⚠️Own documents for the following countries :green[FOUND], select them in the list below to override.)'
return new_countries, info
################################ Tools for Agent to Use ################################
# The most important tool is the first one, which uses a RetrievalQA chain to answer a question about a specific country's ESG policies,
# e.g. carbon emissions policy of Singapore.
# By calling this tool multiple times, the agent is able to look at the responses from this tool for both countries and compare them.
# This is far better than just retrieving relevant chunks for the user's query and throwing everything to a single RetrievalQA chain to process
# Multi input tools are not available, hence we have to prompt the agent to give an input list as a string
# then use ast.literal_eval to convert it back into a list
@tool
def retrieve_answer_for_country(query_and_country: str) -> str: # TODO, change diff chain type diff version answers, change
"""Gives answer to a query about a single country's public ESG policy.
The input list should be of the following format:
[query, country]
The first element of the list is the user query, surrounded by double quotes.
The second element is the full name of the country involved, surrounded by double quotes, for example "Singapore".
The 2 inputs are separated by a comma. Do not write a list comprehension.
The 2 inputs, together, are surrounded by square brackets as it is a list.
Do not put multiple countries into the input at once. Instead use this tool multiple times, one time for each country.
If you have multiple queries to ask about a country, break the query into separate parts and use this tool multiple times, one for each query.
"""
try:
query_and_country_list = ast.literal_eval(query_and_country)
query = query_and_country_list[0]
country = query_and_country_list[1].capitalize() # in case LLM did not capitalize first letter as filtering for metadata is case sensitive
if not country in (countries + st.session_state['countries_override']):
return """The country that you input into the tool cannot be found.
If you did not make a mistake and the country that you input is indeed what the user asked,
then there is no record for the country and no answer can be obtained."""
# if there are countries we want to override
if country in st.session_state['countries_override']:
# keyword
bm = bm25_new_retrievers [country]
bm.k = st.session_state['bm25_n_similar_documents']
# semantic
chroma = chroma_db_new.as_retriever(search_kwargs={'filter': {'country':country}, 'k': st.session_state['chroma_n_similar_documents']})
else:
# keyword
bm = bm25_retrievers[country]
bm.k = st.session_state['bm25_n_similar_documents']
# semantic
chroma = chroma_db.as_retriever(search_kwargs={'filter': {'country':country}, 'k': st.session_state['chroma_n_similar_documents']})
# ensemble (below) reranks results from both retrievers above
ensemble = EnsembleRetriever(retrievers=[bm, chroma], weights=[st.session_state['keyword_retriever_weight'], 1 - st.session_state['keyword_retriever_weight']])
# for user to make selection
retrievers = {'Ensemble (Both Re-Ranked)': ensemble, 'Semantic (Chroma DB)': chroma, 'Keyword (BM 2.5)': bm}
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=retrievers[st.session_state['retriever_config']], # selected retriever based on user config
return_source_documents=True # returned in result['source_documents']
)
result = qa(query)
# add to source documents session state so it can be loaded later in the other menu
# all source documents linked to answer any query (or part of it) are visible
st.session_state['source_documents'].append(f"Documents retrieved for agent query '{query}' for country '{country}'.")
st.session_state['source_documents'].append(result['source_documents'])
return f"'{query.capitalize()}' for '{country}': " + result['result']
except Exception as e:
return f"""There is an error using this tool: {e}. Check if you have input anything wrongly and try again.
Remember the 2 inputs, query and country, must both be surrounded by double quotes.
The 2 inputs, together, are surrounded by square brackets as it is a list."""
# if a user tries to casually chat with the agent chatbot, the LLM will be able to use this tool to reply instead
# this is optional, better to let user's know the chatbot is not for casual chatting
@tool
def generic_chat_llm(query: str) -> str:
"""Use this tool for general queries and casual chat. Forward the user input directly into this tool, do not come up with your own input.
This tool IS NOT FOR MAKING COMPARISONS of anything.
This tool IS NOT FOR FINDING ESG POLICY of any country!
It is only for casual chat! Do not use this tool unnecessarily!
"""
try:
# Second Generic Tool
prompt = PromptTemplate(
input_variables=["query"],
template="{query}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
return llm_chain.run(query)
except Exception as e:
return f"""There is an error using this tool: {e}. Check if you have input anything wrongly and try again.
If you have already tried 2 times, do not try anymore, there is no response for your input.
Move on to the next step of your plan."""
# sometimes the agent will suddenly ask for a 'compare' tool even though it was not given this tool
# hence I have decided to give it this tool that gives a prompt to remind it to look at past information
# and decide whether it is time to darw a conclusion
# tools cannot have no input, hence I let the agent input a 'query' parameter even though it is not used
# having the query as input let the LLM 'recall' what is being asked
# instead of it being lost all the way at the start of the ReAct process
@tool
def compare(query:str) -> str:
"""Use this tool to give you hints and instructions on how you can compare between policies of countries.
Use this tool as a final step, only after you have used other tools to obtain all the information you need.
When putting the query into this tool, look at the entire query that the user has asked at the start,
do not leave any details in the query out.
"""
return f"""Once again, check through all your previous observations to answer the user query.
Make sure every part of the query is addressed by the context, or that you have at least tried to do so.
Make sure you have not forgotten to address anything in the query.
If you still need more details, you can use another tool to find out more if you have not tried using the same tool with the necessary input earlier.
If you have enough information, use your reasoning to answer them to the best of your ability.
Give as much elaboration in your answer as possible but they MUST be from the earlier context.
Do not give details that cannot be found in the earlier context."""
# equip tools with callbacks
retrieve_answer_for_country.callbacks = [my_callback_handler]
compare.callbacks = [my_callback_handler]
generic_chat_llm.callbacks = [my_callback_handler]
# Initialize
agent = initialize_agent(
[retrieve_answer_for_country, compare], # tools
# uncomment below if want to enable general chat option also, if user engages bot with casual talk
# however user should be advised not to do this
# [generic_chat_llm, retrieve_answer_for_country, compare],
llm=llm,
agent="zero-shot-react-description", # this is good
verbose=False,
handle_parsing_errors=True,
return_intermediate_steps=True,
callbacks=[my_callback_handler]
# no memories, limited RAM in HuggingFaceSpaces
# in production mode conversation can be stored for separate users/chat sessions in postgresql database
# memory=ConversationBufferMemory(
# memory_key="chat_history", return_messages=True
# ),
# max_iterations=10
)
################################ Sidebar with Menu ################################
with st.sidebar:
st.title("ESG Countries Chatbot")
page = option_menu("Menu",
[
"Main Chatbot",
"View Source Docs for Last Query",
"Scrape or Upload Own Docs",
],
icons=['house', 'gear', 'gear', 'gear'],
menu_icon="", default_index=0)
with st.expander("Warning", expanded = True):
st.write("⚠️ DO NOT navigate between pages or change config when chat is ongoing. Wait for query to complete first.")
st.write("")
new_countries, info = check_for_new_retrievers()
# if new retrievers that pass the above criteria are found, let the user know their countries
# the user can select from these countries to override existing retrievers
# otherwise prompt user to scrape or upload own PDF to create the new retrievers
with st.expander("Document Config", expanded = True):
st.multiselect(
'Countries to Override with Own Docs:' + info,
new_countries,
key="countries_override"
)
st.selectbox(
"Chunk Size",
options=[500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000],
on_change=update_retrievers,
key="chunk_size"
)
st.selectbox(
"Chunk Overlap",
options=[50, 100, 150, 200],
on_change=update_retrievers,
key="chunk_overlap"
)
st.write("")
with st.expander("LLM Config", expanded = True):
st.selectbox(
"HuggingFace Inference Model",
options=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
on_change=update_llm,
key="model"
)
st.slider(
"Temperature",
0.0, 1.0, 0.05,
#value = st.session_state['temperature'],
on_change=update_llm,
key="temperature"
)
st.slider(
"Max Tokens Generated",
200, 1000,
on_change=update_llm,
key="max_new_tokens"
)
st.write("")
with st.expander("Retriever Config", expanded = True):
st.selectbox(
"Retriever to Use",
options=['Ensemble (Both Re-Ranked)', 'Semantic (Chroma DB)', 'Keyword (BM 2.5)'],
key="retriever_config"
)
st.slider(
"Keyword Retriever Weight (If using ensemble retriever, this is the weight of the keyword retriever, semantic retriever would be 1 minus this value)",
0.0, 0.05, 1.0,
key="keyword_retriever_weight"
)
st.number_input(
"Number of Relevant Documents Returned by Keyword Retriever (BM25)",
0, 20,
key="bm25_n_similar_documents"
)
st.number_input(
"Number of Relevant Documents Returned by Semantic Retriever (ChromaDB)",
0, 20,
key="chroma_n_similar_documents"
)
################################ Main Chatbot Page ################################
if page == "Main Chatbot":
st.subheader("Chatbot")
# Store the conversation in the session state.
# Used to render the chat conversation.
# Initialize it with the first message for users to be greeted with
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant",
"content": f"""
Hello, I am a chatbot which specializes in ESG policies of countries.
Currently I have data for {(', ').join(countries)}.
You can update the data or add data for more countries in the left menu under ""Scrape or Upload Own Docs".
You can ask me to compare specific policies between multiple countries too. An example of a question you can ask me is:
"What are the differences between carbon emissions policy in Singapore, Malaysia and China?" How may I help you today?
"""}
]
# Loop through each message in the session state and render it as a chat message
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# We take questions/instructions from the chat input to pass to the LLM
if user_query := st.chat_input("Your message here", key="user_input"):
# reset source documents list during a new query
st.session_state['source_documents'] = [f"User query: '{user_query}'"] # reset source documents list
# Add our input to the session state
formatted_user_query = f":blue[{user_query}]"
st.session_state.messages.append(
{"role": "user", "content": formatted_user_query}
)
# Add our input to the chat window
with st.chat_message("user"):
st.markdown(formatted_user_query)
# Let user know agent is planning the actions
action_plan_message = "Please wait while I plan out a best set of actions to obtain the necessary information to answer your query."
# Add the response to the session state
st.session_state.messages.append(
{"role": "assistant", "content": action_plan_message}
)
# Add the response to the chat window
with st.chat_message("assistant"):
st.markdown(action_plan_message)
results = agent(user_query)
response = f":blue[The answer to your query is:] {results['output']}"
# Add the response to the session state
st.session_state.messages.append(
{"role": "assistant", "content": response}
)
# Add the response to the chat window
with st.chat_message("assistant"):
st.markdown(response)
################################ Source Documents Page ################################
if page == "View Source Docs for Last Query":
st.subheader("Source Documents for Last Query")
try:
st.subheader(st.session_state['source_documents'][0])
for doc in st.session_state['source_documents'][1:]:
#st.write("Source: " + doc['page_content'])
st.write(doc)
except:
st.write("No source documents retrieved yet. Please run a full user query before coming back to this page.")
################################ Scrap or Upload Documents Page ################################
# to scrape new documents from DuckDuckGo
# to upload own PDF
# to override existing data on new scraped data or new pdf uploaded
if page == "Scrape or Upload Own Docs":
st.header("Scrape or Upload Own PDF")
st.write("Here you can choose to upload your own PDF or scrape more recent data via DuckDuckGo search for a selected country below.")
st.write(":blue[NOTE: Certain countries were not present in the original default vector stores, you can scrape data for these countries too so you can ask about them in the chat.]")
st.write("You will create new BM2.5 (keyword) and Chroma (semantic) retrievers for it. Note that this can take a very long time.")
country_scrape_upload = st.selectbox(
"Select Country",
options=[
"Australia", "Bangladesh", "Brunei", "Cambodia", "China", "India", "Indonesia", "Japan", "Laos", "Macau", "Malaysia", "Myanmar",
"Nepal", "Philippines", "Singapore", "South Korea", "Sri Lanka", "Thailand", "Vietnam", "France", "Germany", "Israel", "Poland",
"Sweden", "Turkey", "United Kingdom", "United States"
],
)
# display documents chunk sizes and overlaps
col1, col2 = st.columns(2)
with col1:
with st.container(border = True):
st.write("New Documents Chunk Size: (Can change in sidebar)" )
st.text(f"{st.session_state['chunk_size']}" )
with col2:
with st.container(border = True):
st.write("New Documents Chunk Overlap: (Can change in sidebar)" )
st.text(f"{st.session_state['chunk_overlap']}")
# how user wishes to populate documents
options = [
"Upload Own PDF",
"Automatically Scrape Web Data using DuckDuckGo (may take more than 5 mins)"
]
option = st.radio(
"How Do You Wish To Create New Documents",
options=options
)
submit_upload_pdf = False
submit_scrape_web = False
submit_scrape_vector_store = False
# save new retrievers in local directory
def save_new_retrievers(all_documents, chunk_size, chunk_overlap, country_scrape_upload):
with st.spinner('Setting up new bm25 retrievers with documents, may take more than 5 mins...'):
# vectorstore for this country will be stored in "bm25/new_{country}_chunk_{chunk_size}_overlap_{chunk_overlap}_"
# can be used to override existing vectorstore for this country in sidebar document configuration
setup_bm25_retriever(all_documents, chunk_size, chunk_overlap, country_scrape_upload)
with st.spinner('Setting up new chromadb vector stores with documents, may take more than 5 mins...'):
# vectorstore for this country will be stored in "chroma_db/new_{country}_chunk_{chunk_size}_overlap_{chunk_overlap}_"
# can be used to override existing vectorstore for this country in sidebar document configuration
setup_chromadb_vectorstore(hf_embeddings, all_documents, chunk_size, chunk_overlap, country_scrape_upload)
st.toast(":blue[SUCCESS!] New retrievers set up with your new data. To override data for this country, you can :blue[Select the Countries to Override in the 'Document Config'] section of the left sidebar.")
st.rerun()
# form for user to configure pdf loading options
if option == options[0]:
with st.form(key='upload_pdf_form'):
st.subheader(f"Selected Option: {option}")
uploaded_pdf = st.file_uploader("Upload a PDF")
if uploaded_pdf:
temp_file = uploaded_pdf.name
with open(temp_file, "wb") as file:
file.write(uploaded_pdf.getvalue())
submit_upload_pdf = st.form_submit_button(label='Upload and Create Vector Store (Scroll down after clicking)')
st.markdown(":blue[NOTE:] After you are done creating the vector store, the country will appear under :blue[Countries to Override in the 'Document Config'] section of the left sidebar. Select the country to override it.")
if submit_upload_pdf:
try:
with st.spinner('Generating documents from PDF...may take more than 5 mins...'):
all_documents = pdf_loader_local(temp_file, country_scrape_upload)
#st.write(all_documents)
save_new_retrievers(all_documents, st.session_state['chunk_size'], st.session_state['chunk_overlap'], country_scrape_upload)
except Exception as e:
st.write(f"Error! Did you remember to upload the PDF file? Error Message: {e}")
# form for user to configure web scraping for duckduckgo
if option == options[1]:
with st.form(key='scrape_web_form'):
st.subheader(f"Selected Option: {option}")
n_search_results = st.number_input(
"How many DuckDuckGo search results would you like to scrape? In the default vector stores, the number is 10 but it will take a very long time!",
0, 20,
value = 5
)
search_term = st.text_input(
"Search Term",
value = f"{country_scrape_upload} sustainability esg newest updated public policy document government",
)
submit_scrape_web = st.form_submit_button(label='Scrape Web for Results and Create Vector Store (Scroll down after clicking)')
st.markdown(":blue[NOTE:] After you are done creating the vector store, the country will appear under :blue[Countries to Override in the 'Document Config'] section of the left sidebar. Select the country to override it.")
if submit_scrape_web:
with st.spinner('Scraping web using Duck Duck Go search...'):
all_links, df_links = duckduckgo_scrape(country_scrape_upload, search_term, n_search_results)
st.write(f"Results from Web Scrape")
try:
st.write(df_links)
except:
st.write("Waiting for web scraping results.")
with st.spinner('Generating documents from web search results...may take more than 5 mins...'):
all_documents = process_links_load_documents(all_links)
save_new_retrievers(all_documents, st.session_state['chunk_size'], st.session_state['chunk_overlap'], country_scrape_upload) |