Spaces:
Sleeping
Sleeping
import logging | |
import warnings | |
import gradio as gr | |
import pytube as pt | |
import torch | |
from huggingface_hub import model_info | |
from transformers import pipeline | |
from transformers.utils.logging import disable_progress_bar | |
warnings.filterwarnings("ignore") | |
disable_progress_bar() | |
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french" | |
# make sure no OOM | |
MODEL_NAMES = [ | |
"bofenghuang/whisper-medium-cv11-french", | |
"bofenghuang/whisper-large-v2-cv11-french", | |
] | |
CHUNK_LENGTH_S = 30 | |
# STRIDE_LENGTH_S = 0 | |
# MAX_NEW_TOKENS = 225 | |
logging.basicConfig( | |
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", | |
datefmt="%Y-%m-%dT%H:%M:%SZ", | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
device = 0 if torch.cuda.is_available() else "cpu" | |
logger.info(f"Model will be loaded on device `{device}`") | |
cached_models = {} | |
def print_cuda_memory_info(): | |
used_mem, tot_mem = torch.cuda.mem_get_info() | |
logger.info(f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb") | |
def print_memory_info(): | |
# todo | |
if device == "cpu": | |
pass | |
else: | |
print_cuda_memory_info() | |
def maybe_load_cached_pipeline(model_name): | |
pipe = cached_models.get(model_name) | |
if pipe is None: | |
# load pipeline | |
# todo: set decoding option for pipeline | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model_name, | |
chunk_length_s=CHUNK_LENGTH_S, | |
# stride_length_s=STRIDE_LENGTH_S, | |
device=device, | |
) | |
# set forced_decoder_ids | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe") | |
# limit genneration max length | |
# pipe.model.config.max_length = MAX_NEW_TOKENS + 1 | |
logger.info(f"`{model_name}` pipeline has been initialized") | |
print_memory_info() | |
cached_models[model_name] = pipe | |
return pipe | |
def transcribe(microphone, file_upload, model_name): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
pipe = maybe_load_cached_pipeline(model_name) | |
text = pipe(file)["text"] | |
logger.info(f"Transcription by `{model_name}`: {text}") | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, model_name): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
pipe = maybe_load_cached_pipeline(model_name) | |
text = pipe("audio.mp3")["text"] | |
logger.info(f'Transcription by `{model_name}` of "{yt_url}": {text}') | |
return html_embed_str, text | |
# load default model | |
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME) | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record"), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload File"), | |
gr.inputs.Dropdown(choices=MODEL_NAMES, default=DEFAULT_MODEL_NAME, label="Whisper Model"), | |
], | |
# outputs="text", | |
outputs=gr.outputs.Textbox(label="Transcription"), | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper French Demo 🇫🇷 : Transcribe Audio", | |
description="Transcribe long-form microphone or audio inputs with the click of a button!", | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Dropdown(choices=MODEL_NAMES, default=DEFAULT_MODEL_NAME, label="Whisper Model"), | |
], | |
# outputs=["html", "text"], | |
outputs=[ | |
gr.outputs.HTML(label="YouTube Page"), | |
gr.outputs.Textbox(label="Transcription"), | |
], | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper French Demo 🇫🇷 : Transcribe YouTube", | |
description="Transcribe long-form YouTube videos with the click of a button!", | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
# demo.launch(server_name="0.0.0.0", debug=True, share=True) | |
demo.launch(enable_queue=True) | |