Spaces:
Sleeping
Sleeping
bofenghuang
commited on
Commit
Β·
2eface4
1
Parent(s):
8ac5039
Use ct2 for inference
Browse files
app.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
run_demo_ct2.py
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
git+https://github.com/huggingface/transformers
|
2 |
git+https://github.com/openai/whisper.git
|
|
|
3 |
nltk
|
4 |
pandas
|
5 |
psutil
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
git+https://github.com/openai/whisper.git
|
3 |
+
git+https://github.com/guillaumekln/faster-whisper.git
|
4 |
nltk
|
5 |
pandas
|
6 |
psutil
|
run_demo_ct2.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 Bofeng Huang
|
4 |
+
|
5 |
+
import datetime
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import pandas as pd
|
13 |
+
import psutil
|
14 |
+
import pytube as pt
|
15 |
+
import torch
|
16 |
+
# import whisper
|
17 |
+
from faster_whisper import WhisperModel
|
18 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
19 |
+
from transformers.utils.logging import disable_progress_bar
|
20 |
+
|
21 |
+
import nltk
|
22 |
+
nltk.download("punkt")
|
23 |
+
|
24 |
+
from nltk.tokenize import sent_tokenize
|
25 |
+
|
26 |
+
warnings.filterwarnings("ignore")
|
27 |
+
disable_progress_bar()
|
28 |
+
|
29 |
+
# DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
30 |
+
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french-ct2"
|
31 |
+
# CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
32 |
+
|
33 |
+
GEN_KWARGS = {
|
34 |
+
"task": "transcribe",
|
35 |
+
"language": "fr",
|
36 |
+
# "without_timestamps": True,
|
37 |
+
# decode options
|
38 |
+
# "beam_size": 5,
|
39 |
+
# "patience": 2,
|
40 |
+
# disable fallback
|
41 |
+
# "compression_ratio_threshold": None,
|
42 |
+
# "logprob_threshold": None,
|
43 |
+
# vad threshold
|
44 |
+
# "no_speech_threshold": None,
|
45 |
+
}
|
46 |
+
|
47 |
+
logging.basicConfig(
|
48 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
49 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
50 |
+
)
|
51 |
+
logger = logging.getLogger(__name__)
|
52 |
+
logger.setLevel(logging.DEBUG)
|
53 |
+
|
54 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
55 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
56 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
57 |
+
logger.info(f"Model will be loaded on device `{device}`")
|
58 |
+
|
59 |
+
cached_models = {}
|
60 |
+
|
61 |
+
|
62 |
+
def format_timestamp(seconds):
|
63 |
+
return str(datetime.timedelta(seconds=round(seconds)))
|
64 |
+
|
65 |
+
|
66 |
+
def _return_yt_html_embed(yt_url):
|
67 |
+
video_id = yt_url.split("?v=")[-1]
|
68 |
+
HTML_str = (
|
69 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' " </center>"
|
70 |
+
)
|
71 |
+
return HTML_str
|
72 |
+
|
73 |
+
|
74 |
+
def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"):
|
75 |
+
yt = pt.YouTube(yt_url)
|
76 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
77 |
+
# stream.download(filename="audio.mp3")
|
78 |
+
stream.download(filename=downloaded_filename)
|
79 |
+
return downloaded_filename
|
80 |
+
|
81 |
+
|
82 |
+
def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"):
|
83 |
+
yt = pt.YouTube(yt_url)
|
84 |
+
stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first()
|
85 |
+
stream.download(filename=downloaded_filename)
|
86 |
+
logger.info(f"Download YouTube video from {yt_url}")
|
87 |
+
return downloaded_filename
|
88 |
+
|
89 |
+
|
90 |
+
def _print_memory_info():
|
91 |
+
memory = psutil.virtual_memory()
|
92 |
+
logger.info(
|
93 |
+
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def _print_cuda_memory_info():
|
98 |
+
used_mem, tot_mem = torch.cuda.mem_get_info()
|
99 |
+
logger.info(
|
100 |
+
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def print_memory_info():
|
105 |
+
_print_memory_info()
|
106 |
+
_print_cuda_memory_info()
|
107 |
+
|
108 |
+
|
109 |
+
def maybe_load_cached_pipeline(model_name):
|
110 |
+
model = cached_models.get(model_name)
|
111 |
+
if model is None:
|
112 |
+
# downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
|
113 |
+
downloaded_model_path = snapshot_download(repo_id=model_name)
|
114 |
+
|
115 |
+
# model = whisper.load_model(downloaded_model_path, device=device)
|
116 |
+
model = WhisperModel(downloaded_model_path, device=device, compute_type="float16")
|
117 |
+
logger.info(f"`{model_name}` has been loaded on device `{device}`")
|
118 |
+
|
119 |
+
print_memory_info()
|
120 |
+
|
121 |
+
cached_models[model_name] = model
|
122 |
+
return model
|
123 |
+
|
124 |
+
|
125 |
+
def infer(model, filename, with_timestamps, return_df=False):
|
126 |
+
if with_timestamps:
|
127 |
+
# model_outputs = model.transcribe(filename, **GEN_KWARGS)
|
128 |
+
model_outputs, _ = model.transcribe(filename, **GEN_KWARGS)
|
129 |
+
model_outputs = [segment._asdict() for segment in model_outputs]
|
130 |
+
if return_df:
|
131 |
+
# model_outputs_df = pd.DataFrame(model_outputs["segments"])
|
132 |
+
model_outputs_df = pd.DataFrame(model_outputs)
|
133 |
+
# print(model_outputs)
|
134 |
+
# print(model_outputs_df)
|
135 |
+
# print(model_outputs_df.info(verbose=True))
|
136 |
+
model_outputs_df = model_outputs_df[["start", "end", "text"]]
|
137 |
+
model_outputs_df["start"] = model_outputs_df["start"].map(format_timestamp)
|
138 |
+
model_outputs_df["end"] = model_outputs_df["end"].map(format_timestamp)
|
139 |
+
model_outputs_df["text"] = model_outputs_df["text"].str.strip()
|
140 |
+
return model_outputs_df
|
141 |
+
else:
|
142 |
+
return "\n\n".join(
|
143 |
+
[
|
144 |
+
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
|
145 |
+
# for segment in model_outputs["segments"]
|
146 |
+
for segment in model_outputs
|
147 |
+
]
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
# text = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
151 |
+
model_outputs, _ = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)
|
152 |
+
model_outputs = list(model_outputs)
|
153 |
+
text = model_outputs[0].text
|
154 |
+
if return_df:
|
155 |
+
return pd.DataFrame({"text": sent_tokenize(text)})
|
156 |
+
else:
|
157 |
+
return text
|
158 |
+
|
159 |
+
|
160 |
+
def transcribe(microphone, file_upload, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
161 |
+
warn_output = ""
|
162 |
+
if (microphone is not None) and (file_upload is not None):
|
163 |
+
warn_output = (
|
164 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
165 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
166 |
+
)
|
167 |
+
|
168 |
+
elif (microphone is None) and (file_upload is None):
|
169 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
170 |
+
|
171 |
+
file = microphone if microphone is not None else file_upload
|
172 |
+
|
173 |
+
model = maybe_load_cached_pipeline(model_name)
|
174 |
+
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
175 |
+
# text = infer(model, file, with_timestamps)
|
176 |
+
text = infer(model, file, with_timestamps, return_df=True)
|
177 |
+
|
178 |
+
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
179 |
+
|
180 |
+
# return warn_output + text
|
181 |
+
return text
|
182 |
+
|
183 |
+
|
184 |
+
def yt_transcribe(yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
185 |
+
# html_embed_str = _return_yt_html_embed(yt_url)
|
186 |
+
audio_file_path = download_audio_from_youtube(yt_url)
|
187 |
+
|
188 |
+
model = maybe_load_cached_pipeline(model_name)
|
189 |
+
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
|
190 |
+
# text = infer(model, audio_file_path, with_timestamps)
|
191 |
+
text = infer(model, audio_file_path, with_timestamps, return_df=True)
|
192 |
+
|
193 |
+
logger.info(f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
194 |
+
|
195 |
+
# return html_embed_str, text
|
196 |
+
return text
|
197 |
+
|
198 |
+
|
199 |
+
def video_transcribe(video_file_path, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
200 |
+
if video_file_path is None:
|
201 |
+
raise ValueError("Failed to transcribe video as no video_file_path has been defined")
|
202 |
+
|
203 |
+
audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path)
|
204 |
+
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"')
|
205 |
+
|
206 |
+
model = maybe_load_cached_pipeline(model_name)
|
207 |
+
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
|
208 |
+
text = infer(model, audio_file_path, with_timestamps, return_df=True)
|
209 |
+
|
210 |
+
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
211 |
+
|
212 |
+
return text
|
213 |
+
|
214 |
+
|
215 |
+
# load default model
|
216 |
+
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
217 |
+
|
218 |
+
# default_text_output_df = pd.DataFrame(columns=["start", "end", "text"])
|
219 |
+
default_text_output_df = pd.DataFrame(columns=["text"])
|
220 |
+
|
221 |
+
with gr.Blocks() as demo:
|
222 |
+
|
223 |
+
with gr.Tab("Transcribe Audio"):
|
224 |
+
gr.Markdown(
|
225 |
+
f"""
|
226 |
+
<div>
|
227 |
+
<h1 style='text-align: center'>Whisper French Demo: Transcribe Audio</h1>
|
228 |
+
</div>
|
229 |
+
Transcribe long-form microphone or audio inputs!
|
230 |
+
|
231 |
+
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
232 |
+
|
233 |
+
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2).
|
234 |
+
"""
|
235 |
+
)
|
236 |
+
|
237 |
+
microphone_input = gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True)
|
238 |
+
upload_input = gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True)
|
239 |
+
with_timestamps_input = gr.Checkbox(label="With timestamps?")
|
240 |
+
|
241 |
+
microphone_transcribe_btn = gr.Button("Transcribe Audio")
|
242 |
+
|
243 |
+
# gr.Markdown('''
|
244 |
+
# Here you will get generated transcrit.
|
245 |
+
# ''')
|
246 |
+
|
247 |
+
# microphone_text_output = gr.outputs.Textbox(label="Transcription")
|
248 |
+
text_output_df2 = gr.DataFrame(
|
249 |
+
value=default_text_output_df,
|
250 |
+
label="Transcription",
|
251 |
+
row_count=(0, "dynamic"),
|
252 |
+
max_rows=10,
|
253 |
+
wrap=True,
|
254 |
+
overflow_row_behaviour="paginate",
|
255 |
+
)
|
256 |
+
|
257 |
+
microphone_transcribe_btn.click(
|
258 |
+
transcribe, inputs=[microphone_input, upload_input, with_timestamps_input], outputs=text_output_df2
|
259 |
+
)
|
260 |
+
|
261 |
+
# with gr.Tab("Transcribe YouTube"):
|
262 |
+
# gr.Markdown(
|
263 |
+
# f"""
|
264 |
+
# <div>
|
265 |
+
# <h1 style='text-align: center'>Whisper French Demo: Transcribe YouTube</h1>
|
266 |
+
# </div>
|
267 |
+
# Transcribe long-form YouTube videos!
|
268 |
+
|
269 |
+
# Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
|
270 |
+
# """
|
271 |
+
# )
|
272 |
+
|
273 |
+
# yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
274 |
+
# with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True)
|
275 |
+
|
276 |
+
# yt_transcribe_btn = gr.Button("Transcribe YouTube")
|
277 |
+
|
278 |
+
# # yt_text_output = gr.outputs.Textbox(label="Transcription")
|
279 |
+
# text_output_df3 = gr.DataFrame(
|
280 |
+
# value=default_text_output_df,
|
281 |
+
# label="Transcription",
|
282 |
+
# row_count=(0, "dynamic"),
|
283 |
+
# max_rows=10,
|
284 |
+
# wrap=True,
|
285 |
+
# overflow_row_behaviour="paginate",
|
286 |
+
# )
|
287 |
+
# # yt_html_output = gr.outputs.HTML(label="YouTube Page")
|
288 |
+
|
289 |
+
# yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3])
|
290 |
+
|
291 |
+
with gr.Tab("Transcribe Video"):
|
292 |
+
gr.Markdown(
|
293 |
+
f"""
|
294 |
+
<div>
|
295 |
+
<h1 style='text-align: center'>Whisper French Demo: Transcribe Video</h1>
|
296 |
+
</div>
|
297 |
+
Transcribe long-form YouTube videos or uploaded video inputs!
|
298 |
+
|
299 |
+
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
|
300 |
+
|
301 |
+
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2).
|
302 |
+
"""
|
303 |
+
)
|
304 |
+
|
305 |
+
yt_link_input = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
306 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
307 |
+
downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False)
|
308 |
+
download_youtube_btn.click(download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output])
|
309 |
+
|
310 |
+
with_timestamps_input3 = gr.Checkbox(label="With timestamps?", value=True)
|
311 |
+
video_transcribe_btn = gr.Button("Transcribe video")
|
312 |
+
text_output_df = gr.DataFrame(
|
313 |
+
value=default_text_output_df,
|
314 |
+
label="Transcription",
|
315 |
+
row_count=(0, "dynamic"),
|
316 |
+
max_rows=10,
|
317 |
+
wrap=True,
|
318 |
+
overflow_row_behaviour="paginate",
|
319 |
+
)
|
320 |
+
|
321 |
+
video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output, with_timestamps_input3], outputs=[text_output_df])
|
322 |
+
|
323 |
+
# demo.launch(server_name="0.0.0.0", debug=True)
|
324 |
+
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
325 |
+
demo.launch(enable_queue=True)
|
run_demo.py β run_demo_hf.py
RENAMED
File without changes
|
run_demo_multi_models.py β run_demo_hf_multiple_models.py
RENAMED
File without changes
|
run_demo_low_api_openai.py β run_demo_openai_layout.py
RENAMED
@@ -212,7 +212,7 @@ with gr.Blocks() as demo:
|
|
212 |
gr.Markdown(
|
213 |
f"""
|
214 |
<div>
|
215 |
-
<h1 style='text-align: center'>Whisper French Demo
|
216 |
</div>
|
217 |
Transcribe long-form microphone or audio inputs!
|
218 |
|
@@ -248,7 +248,7 @@ with gr.Blocks() as demo:
|
|
248 |
# gr.Markdown(
|
249 |
# f"""
|
250 |
# <div>
|
251 |
-
# <h1 style='text-align: center'>Whisper French Demo
|
252 |
# </div>
|
253 |
# Transcribe long-form YouTube videos!
|
254 |
|
@@ -278,7 +278,7 @@ with gr.Blocks() as demo:
|
|
278 |
gr.Markdown(
|
279 |
f"""
|
280 |
<div>
|
281 |
-
<h1 style='text-align: center'>Whisper French Demo
|
282 |
</div>
|
283 |
Transcribe long-form YouTube videos or uploaded video inputs!
|
284 |
|
|
|
212 |
gr.Markdown(
|
213 |
f"""
|
214 |
<div>
|
215 |
+
<h1 style='text-align: center'>Whisper French Demo: Transcribe Audio</h1>
|
216 |
</div>
|
217 |
Transcribe long-form microphone or audio inputs!
|
218 |
|
|
|
248 |
# gr.Markdown(
|
249 |
# f"""
|
250 |
# <div>
|
251 |
+
# <h1 style='text-align: center'>Whisper French Demo: Transcribe YouTube</h1>
|
252 |
# </div>
|
253 |
# Transcribe long-form YouTube videos!
|
254 |
|
|
|
278 |
gr.Markdown(
|
279 |
f"""
|
280 |
<div>
|
281 |
+
<h1 style='text-align: center'>Whisper French Demo: Transcribe Video</h1>
|
282 |
</div>
|
283 |
Transcribe long-form YouTube videos or uploaded video inputs!
|
284 |
|