Spaces:
Running
Running
File size: 1,166 Bytes
eb937e4 a05267c eb937e4 f0b2cfd eb937e4 a05267c e50284d a05267c eb937e4 07fa407 eb937e4 9844004 f0b2cfd 76e0282 a05267c f0b2cfd eb937e4 f0b2cfd a05267c f0b2cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import logging
import warnings
import gradio as gr
from transformers import pipeline
from transformers.utils.logging import disable_progress_bar
warnings.filterwarnings("ignore")
disable_progress_bar()
logging.basicConfig(
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
pipe = pipeline(model="bofenghuang/asr-wav2vec2-ctc-french")
logger.info("ASR pipeline has been initialized")
def transcribe(audio, state=""):
text = pipe(audio, chunk_length_s=5, stride_length_s=1)["text"]
state += text + " "
logger.info(f"Transcription for {audio}: {state}")
return state, state
# streaming mode
iface = gr.Interface(
fn=transcribe,
inputs=[gr.Audio(source="microphone", type="filepath", streaming=True, label="Record something..."), "state"],
outputs=["textbox", "state"],
title="Realtime Speech-to-Text in French",
description="Realtime demo for French automatic speech recognition.",
allow_flagging="never",
live=True,
)
# iface.launch(server_name="0.0.0.0", debug=True, share=True)
iface.launch()
|